BACHELOR IN COMPUTER

APPLICATIONS
Term - End Examination
December, 2006

CS - 60: FOUNDATION COURSE IN

MATHEMATICS IN COMPUTING
Time: 3 hours
Maximum Marks: 75
Note: Question number 1 is three questions from compulsory. Answer any three rest.

1. (a) Check whether the function f defined by
$\left.f(x)=x \log \left(\frac{1-x}{1+x}\right), x \in\right] 0,1[$
(b) Find
(2)
$\frac{d}{d x}\left[\int_{2}^{x\left(1-x^{4}\right)} \tan ^{-1}(\sin 3 t) d t\right]$
(c) Find the projection of the line segment PQ on the PQ on the line given by
$\frac{x-3}{1}=2 y+3=\frac{x}{-2}$
where $P(1,3,4)$ and $Q(-2,-1,2)$.
(d) Consider the hyperboloid, $x^{2}-y^{2}+z^{2}=4$ of one sheet. What are the vertical cross-sections of this for the planes
(i) $x=2$
(ii) $z=1$
(e) Prove that
(4)
$\sin 5 \theta=\cos ^{5} \theta\left(5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta\right)$.
(f)

If $y=e^{m \cos ^{-1} x}$, show that
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+m^{2}\right) y_{n}=0$.
(g) Find the condition for the line $\mathrm{lx}+\mathrm{my}=1$ to be a tangent o the ellipse,(4) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(h) Prove that
$(2-1)\left(2^{2}-1\right) \ldots\left(2^{n}-1\right) \geq 2^{n(n-1) / 2}$
(i) Taking 6 sub-divisions of the interval $t[0,6]$ find an approximate value of $\int_{0}^{6} \frac{x^{2}}{1+x^{2}} d x$ using Simpson's Rule.
2. (a) Find $\lim _{x \rightarrow 0} \frac{e^{-1 / x}+e^{1 / x}}{e^{-1 / x}-e^{1 / x}}$, if it exists.
(b) Prove that the cones given by

$$
\begin{align*}
& a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=0 \text { and } \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0 \tag{3}
\end{align*}
$$

are reciprocal.
(c) Obtain all the fourth roots of $-1-\mathrm{i} \sqrt{3}$.
(d)

If $I_{n}=\int_{0}^{\pi / 2} \theta^{n} \sin \theta d \theta(n>1)$,
prove that
$I_{n}+n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1}$
Hence find the value of I_{5}.
3. (a)

If $\sin y=x \sin (a+y)$,
prove that

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a} \tag{3}
\end{equation*}
$$

(b)

Prove that

$$
\begin{equation*}
\int_{0}^{2 \pi} \cos ^{3} x d x=0 \tag{3}
\end{equation*}
$$

(c)

Evaluate :

$$
\begin{equation*}
\int \frac{\mathrm{d} \theta}{\sec ^{2} \theta+\tan ^{2} \theta} \tag{4}
\end{equation*}
$$

(d) Using Rolle's theorem, show that there is a
$c \in] 1,2[\quad$ satisfying
$\mathrm{x} \log \mathrm{x}=2-\mathrm{x}$.
4 (a) check whether the function f given by:
$f(x)=\left\{\begin{array}{cc}\frac{x^{2}-4 x+3}{|x-3|}, & \text { when } x \neq 3 \\ 4, & \text { when } x=3\end{array}\right.$
is continuous for $x=3.4$
(b) Find the volume of the solid obtained by revolving the cardioid
$\mathrm{r}=\mathrm{a}(1+\cos \theta)$
about the initial line.
(c) Solve the equation
(6)

$$
x^{3}+3 x^{2}-27 x+104=0
$$

by Cardano's method.
5. (a) Find an approximate value of $(1.01)^{7 / 2}$ upto 3 places of decimal, using the Maclaurin's series.
(b) Find the equation of the sphere which touches the sphere $4\left(x^{2}+y^{2}+z^{2}\right)+10 x-25 y-2 z=0$
at $(1,2,-2)$ and passes through the point $(-1,0,0)$.
(c) Reduce the equation $x^{2}+x y+y^{2}-x+4 y+3=0$
to its standard form. Hence identify the coin it represent and draw its rough sketch.

