STATISTICS

Option I

- 1. If X ~ N (8, 64), the standard normal deviate Z will be:
 - $(a) \qquad Z = \frac{X-8}{64}$
 - $\mathbf{(b)} \qquad \mathbf{Z} = \frac{\mathbf{X} \mathbf{8}}{\mathbf{8}}$
 - (c) $\frac{X-64}{8}$
 - (d) None of the above
- 2. If the students on a boat have three red flags, four yellow flags and two blue flags to arrange on a vertical pole, the number of possible signals is:
 - (a) 210
 - (b) 1260
 - (e) 1356
 - (d) 496
- 3. Given that P(A) = 0.7, P(B) = 0.3 and $P(A \cap B) = 0.2$, then P(A/B) is equal to:
 - (a) 2/3
 - (b) 5/6
 - (c) 2/7
 - (d) 1/3
- 4. A variable represents temperature recorded every half hour at a weather bureau.

 The variable is:
 - (a) Discrete
 - (b) Continuous
 - (c) Bivariate
 - (d) Complex

Standard error of sa	mple mean (for	large n) is	given by :
--	----------------	-------------	------------

- (a) $\frac{\sigma}{n}$
- (b) $\frac{\sigma^2}{\sqrt{n}}$
- (c) $\frac{\sigma^2}{n}$
- (d) None of the above

6. A random variable X has the following probability distribution:

x : -1 -2 1 2

p(x) : 1/3 1/6 1/6 1/3

Then E(X) is equal to:

- (a) 3/2
- (b) 4/6
- (c) 11/3
- (d) 1/6

7. Which of the following statements is true?

- (a) Variance can be negative
- (b) Less the S.E., better it is
- (c) S.E. is always unity
- (d) More the S.E., better it is

8. In order to assess the expenditure pattern of the university employees, a random sample of 300 hundred employees is to be taken. Then which of the following sampling methods will be the most suitable method to be used for drawing samples:

- (a) Simple Random Sampling (SRS)
- (b) Systematic Sampling
- (c) Stratified Sampling
- (d) Clustering Sampling

- 9. For a set of observations, $\overline{X} = 15$ and $\sigma = 6$. If all the observations are multiplied by 2, then the resulting mean and σ will be:
 - (a) $\overline{X} = 30$, $\sigma = 12$
 - (b) $\overline{X} = 15, 12$
 - (c) $\overline{X} = 30$, $\sigma = 6$
 - (d) None of the above
- 10. Consider the following LPP:

$$\mathbf{Max}\ \mathbf{Z} = 5x_1 + 4x_2$$

Sub to :

$$6x_1 + 10x_2 \le 16$$

$$2x_1 + 15x_2 \le 17$$

$$x_1, x_2 \geq 0$$

A feasible solution to the above LPP is given by :

- (a) $(x_1 = 2, x_2 = 1)$
- (b) $(x_1 = 2, x_2 = 2)$
- (c) $(x_1 = 1, x_2 = 9)$
- (d) $(x_1 = 1, x_2 = 0)$
- 11. Let $X \sim N$ (μ, σ^2) and μ is unknown. If μ is estimated by the sample mean $\overline{x} = \sum x_i / n$, then \overline{x} is an :
 - (a) estimator
 - (b) estimate
 - (c) optimal value
 - (d) none of the above

12.	Which	h of the following is not the property of a good estimator?					
	(a)	Unbiasedness					
	(b)	Sufficiency					
	(c)	Efficiency					
	(d)	MLE					
13.	For '	what value of K, the following is distribution:					
		$d\mathbf{F} = kx^2 e^{-x} dx, \ 0 < x < \infty.$					
	(a)	1/3					
	(b)	1/2					
	(c)	1/4					
	(d)	None of the above					
14.	If 3 of 20 tyres in storage are defective and four of them are randomly chosen						
		inspection, then what is the probability that one of the defective tyres be included?					
	(a)	4/9					
	(b)	17/25					
	(c)	8/19					
	(d)	13/69					
15.	For a distribution, the mean is 10, variance is 16, $\mu_3 = 64$, then the distribution is :						
	(a)	symmetrical					
	(b)	negatively skewed					
	(c)	moderately positively skewed					
	(d)	none of the above					
Ste	tistics	4					

Statistics

- If \bar{x} is used as an estimate of μ , we can be (1α) 100% confident that the 16. error will not exceed a specified amount e when the sample size is given by:
 - (a) $\left(\frac{\mathbf{Z}_{\alpha} \ \sigma}{e}\right)$
 - (b) $\frac{\left(\mathbf{Z}_{\alpha/2}\;\sigma\right)^2}{e}$
 - (c) $\left(\frac{\mathbf{Z}_{\alpha} \ \sigma}{e}\right)^{1/2}$
 - (d) $\left(\frac{Z_{\alpha/2} \sigma}{\sigma}\right)^2$
- To find the rate of population growth we use : 17.
 - G.M. (a)
 - H.M. (b)
 - (c) A.M.
 - (d) Median
- We make use of which of the following statistics while using Chi-square test 18. for testing independence of attributes:
 - $\Sigma\Sigma \left(E_{ij}-O_{ij}\right)^{2}/E_{ij}^{2}$ (a)
 - (b) $\Sigma\Sigma \left(\mathbf{E}_{ij}-\mathbf{O}_{ij}/\mathbf{E}_{ij}\right)^2$
 - (c) $\Sigma\Sigma\left(O_{ij}-E_{ij}\right)^2$
 - (d) $\Sigma\Sigma \left(\mathbf{E}_{ij} \mathbf{O}_{ij}\right)^2 / \mathbf{E}_{ij}$

P.T.O.

19. If any H_0 is rejected at $\alpha = .05$ level of significance, the	19.	If any	H_0 is	rejected	at	α	= .	.05	level	of	significance,	then	
---	-----	--------	----------	----------	----	---	-----	-----	-------	----	---------------	------	--

- (a) it will be rejected at $\alpha = .10$
- (b) it will be accepted at $\alpha = .10$
- (c) it will be rejected at $\alpha = .01$
- (d) none of the above

20. If X is a random variable, then the standard deviation of X is equal to:

- (a) $\sigma_x = \sqrt{\operatorname{var}(X)}$
- (b) $\sigma_r = +\sqrt{\operatorname{var}(X)}$
- (c) $\sigma_x^2 = \text{var}(X)$
- (d) None of the above

21. Correlation coefficient is independent of change of :

- (a) origin
- (b) scale
- (c) origin and scale
- (d) none of the above

22. If
$$x_1, x_2,, x_n$$
 is a random sample from $N(\mu, \sigma^2)$, then $\frac{\overline{X} - \mu}{S / \sqrt{n}}$ is distributed as:

- (a) $t_{(n-1)}$
- (b) t_n
- (c) N(0, 1)
- (d) χ_1^2

7 P.T.O.						
*						
q is equal to:						
For a Binomial distribution the mean is 6 and standard deviation is $\sqrt{2}$. Then						
pove						
n it is true						
n it is true						
n it is true						
g is a first type of error ?						
Edgeworth's index						
ndex						
of Laspeyer's and Paasche's indices is :						
ed.						
1						
= 2332.49, df for error = 35 and $F_{0.05}$ (4, 35) = 5.735,						
the following information is given: $SST = 92.32$, df for						
t						

- 27. In a trivariate distribution, if $r_{12} = 0.7$, $r_{23} = 0.5$ and $r_{31} = 0.5$, then $R_{1.23}$ is equal to :
 - (a) 0.7211
 - (b) 0.52
 - (c) 0.94
 - (d) None of the above
- 28. Let x_1, x_2, \ldots, x_n be a random sample from normal population with mean μ and variance σ^2 then which of the following is distributed as N(0, 1) when $n \to \infty$.
 - (a) $\frac{\overline{X} \mu}{s/n}$
 - (b) $\frac{\sqrt{n}}{\sigma} (\overline{X} \mu)$
 - (c) $\frac{\overline{X} \mu}{\sigma^2 / n}$
 - (d) . None of the above
- 29. In a Latin Square Design with one missing observation, the error if in case of 4 treatments will be :
 - (a) 6
 - (b) 7
 - (c) 4
 - (d) None of the above
- 30. Which of the following is not the method of measuring seasonal variations?
 - (a) Moving Average Method
 - (b) Ratio to Trend Method
 - (c) Link Relative Method
 - (d) Principle of Least Squares

	31.	If X_i ($i = 1, 2, 3, 4$) are i.i.d. N(0, 1), then	$X_1 - X_2$ is distributed as :
		(a) N (2, 0)	
		(b) N (1, 1)	
		(e) N (0, 2)	
		(d) None of the above	
	32.	If $X \sim Exp (\theta)$, then the variance of X is g	iven by :
		(a) 1/0	
		(b) θ	
		(c) θ^2	
		(d) 1/0 ²	
-13	33.	Given $(A) = 28$, $(B) = 38$, $(AB) = 12$ and N	V = 60. Then A and B are:
-		(a) negatively associated	
,		(b) positively associated	
		(c) not associated	
		(d) independent	
	34.	Sign test is used to test:	
		(a) Mode	8
		(b) Variance	
		(c) SD	
		(d) Median	2
	35.	In a fixed effect model, the degrees of free experiment (in RBD having r replicates) with	
		(a) $4r - 1$	
		(b) $4 (r-1)$	- 12
		(c) $3(r-1)$	
		(d) $(r-1)$	
	Stati	etice 9	PTO

i e

- 36. N.P. Lemma is used to find most powerful critical region for testing :
 - (a) simple null hypothesis Vs. composite alternative hypothesis
 - (b) simple composite Vs. null alternative hypothesis
 - (c) likelihood
 - (d) simple null hypothesis Vs. simple alternative
- 37. The hypothesis that the population variance has a specified value can be tested by :
 - (a) F-test
 - (b) y^2 -test
 - (c) Z-test
 - (d) None of the above
- 38. Two unbiased dice are thrown. Then the probability that both the dice show the same number is:
 - (a) 1/6
 - (b) 5/36
 - (c) 5/18
 - (d) None of the above
- 39. If X and Y are two random variables having joint density function :

$$f(x, y) = \begin{cases} \frac{1}{8} (6 - x - y); & 0 \le x < 2, \ 2 \le y < 4 \\ 0; & \text{otherwise} \end{cases}$$

then P(X + Y < 3) is equal to:

- (a) 3/8
- (b) 3/5
- (c) 5/24
- (d) None of the above

- 40. The m.g.f. of standard normal variate is given by :
 - (a) $\mu t + \frac{t^2 \sigma^2}{2}$
 - (b) $\operatorname{Exp}\left(t^2/2\right)$
 - (c) $\operatorname{Exp}\left(\frac{\mu t + \sigma^2 t^2}{2}\right)$
 - (d) None of the above
- 41. Suppose that X and Y are independent random variables with variances $\sigma_x^2 = 2$ and $\sigma_y^2 = 3$. Then the variance of the random variable Z = 3X 2Y + 5 is:
 - (a) 10
 - (b) 20
 - (c) 30
 - (d) 40
- 42. If we take $\alpha=1$ in Gamma distribution with parameters α and β , we get :
 - (a) Chi-square distribution
 - (b) Weibul distribution
 - (c) F-distribution
 - (d) Exponential distribution
- 43. For which of the following distribution, mean and variance of the distribution are same?
 - (a) Normal
 - (b) Binomial
 - (c) Geometric
 - (d) Poisson

44.	A si	A significant difference between the statistic and parametric value means :						
	(a)	the difference is real						
	(b)	the difference is due to sampling bais						

- (c) the difference is due to chance
- (d) none of the above
- 45. The standard error decreases when sample size :
 - (a) increases
 - (b) decreases
 - (c) remains constant
 - (d) is small
- 46. The degrees of freedom for a 3 × 3 contingency table is :
 - (a) 9
 - (b) 6
 - (c) 4
 - (d) None of the above
- 47. Which of the following is a statistic if μ is unknown?
 - (a) $Y = \sum (x_i \mu)^2$
 - (b) $Y = \Sigma x_i$
 - (c) $Y = \Sigma(x_i \mu)$
 - (d) $\mathbf{Y} = \frac{\sum (x_i \mu)^2}{n}$
- 48. 90% confidence limits for μ are :
 - (a) $\bar{x} \pm 2.58 \frac{\sigma}{\sqrt{n}}$
 - (b) $\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$
 - (c) $\bar{x} \pm 1.645 \frac{\sigma}{n}$
 - (d) None of the above

- 49. If x_1, x_2, \ldots, x_{20} are drawn from a non-normal population then in order to test $H_0: \overline{x} = \mu_0 \ Vs. \ H_1: \overline{x} \neq \mu_0$ (where μ_0 is a specified value) then we make use of which of the following test:
 - (a) t-test
 - (b) z-test
 - (c) sign test
 - (d) none of the above
- 50. In simple random sampling, the variance of the sample mean is given by:
 - (a) $\frac{s^2}{n} \cdot \frac{N}{n}$
 - (b) $\frac{s^2}{n} \cdot \left(\frac{N-n}{N}\right)$
 - (c) $\frac{\sigma^2}{n} \cdot \left(\frac{N-n}{N}\right)$
 - (d) None of the above
- 51. A 23-factorial experiment can be performed as a CRD with :
 - (a) 4 treatments
 - (b) 8 treatments
 - (c) 12 treatments .
 - (d) None of the above
- 52. If a null hypothesis $H_0: \tau_1 = \tau_2 = \tau_3$ is accepted while using a CRD at 0.05 level of significance, it means that :
 - (a) treatments are equally effective
 - (b) treatments are not effective
 - (c) treatments are equally effective at $\alpha = .05$
 - (d) none of the above

- 53. Relative efficiency of LSD over RBD when rows are taken as blocks is given by (taking m treatments and notations carry their usual meanings):
 - (a) $\frac{\text{MSC} + (m-1) \text{ MSE}}{m \cdot \text{MSE}}$
 - (b) $\frac{\text{MSR} + (m-1) \text{ MSE}}{(m-1) \text{ MSE}}$
 - (c) $\frac{\text{MST} + (m-1) \text{ MSE}}{(m-1) \text{ MSE}}$
 - (d) None of the above
- 54. The correlation coefficient for the following data between X and Y:
 - X: 1 2 3 4 5
 - Y: 6 7 8 9 10

is given by:

- (a) Zero
- (b) +1
- (c) -1
- (d) None of the above
- 55. If $b_{xy} = 1/6$ and $b_{yx} = 3/2$, then the value of r is:
 - (a) 1
 - (b) 3/4
 - (c) +0.5
 - (d) -0.5
- 56. Standard deviation of a Binomial distribution $B\left(16,\frac{1}{2}\right)$ is given by :
 - (a) 2
 - (b) 4
 - (e) 16
 - (d) None of the above

- 57. If the two regression lines are coincident, then the relation between two regression coefficients is:
 - $(a) \qquad b_{yx} = b_{xy}$
 - $(b) \qquad b_{yx}b_{xy}=1$
 - (c) $b_{yx} < b_{xy}$
 - (d) $b_{xy} = b_{yx}$
- 58. Factorization theorem for sufficiency is known as :
 - (a) Fisher Neyman Theorem
 - (b) Cramer-Rao Theorem
 - (c) Rao-Blackwell Theorem
 - (d) Chapman-Robin's Theorem
- 59. If Net Reproduction Rate is greater than one then it will result into:
 - (a) no increase in population
 - (b) negative increase in population
 - (c) exponential increase in population
 - (d) increase in population
- 60. Moment Generating Function (mgf) of binomial distribution is given by :
 - (a) $\left(p+qe^t\right)^n$
 - (b) $\left(q+e^t\right)^n$
 - (c) $(p+q)^t$
 - (d) $(q + pe^t)^n$