There will be a different Question Paper for each class. All the questions are objective-type with no negative marking for wrong answers.

Class	No. Of Questions	Marks
2	50	50
3	75	75
$4-12$	100	100

Division of marks in the Question Paper :

For Classes II :

Mathematics : 25
Science : 25

For Classes III :

Note: (for Class III) Question Paper consists of 75 questions only \& 75 marks.
Mathematics : 40
Science : 35

For Classes IV \& V :

Mathematics : 45
Science : 45
General Questions : 10

For Classes VI to \mathbf{X} :
Mathematics : 25
Physics : 25
Chemistry : 20
Biology : 20
General Questions : 10

For Classes XI \& XII (PCM)
Mathematics : 40
Physics : 25

For Classes XI \& XII (PCB)

Biology	$: 40$
Physics	$: 25$
Chemistry	$: 25$
General Questions	$: 10$

All questions are in objective type only
NSTSE follows CBSE syllabus but Question
Papers are also suitable for Students of ICSE/ISC and Various State Board/Matriculation Syllabi.

Sample Papers

(Class XII Physics)

Q-1 In a young's double slit experiment, let S_{1} and S_{2} be the two slits, and C be the centre of the screen. If . angle $\mathrm{S}_{1} \mathrm{CS}_{2}=\theta$ and λ is the wavelength, the fringe width will be:
(A) λ / θ (B) $\lambda \theta(\mathbf{C}) 2 \lambda / \theta$ (D) $\lambda / 2 \theta$

Q-2 In the circuit shown, the potential difference across 3 is:
(A) 2 V
(B) 4 V
(C) 8 V
(D) 16 V

Q-3 The circuit given below represents which of the logic operations?
(A)AND
(B)NOT
(C)OR
(D)NOR

Q-4 The ratio of minimum to maximum wavelengths in the Lyman series of radiation that an electron causes in a Bohr's hydrogen atom is:
(A) $1 / 2$
(B) zero
(C) $3 / 4$
(D) $27 / 32$

Q-5 A solid metal sphere of radius 50 cm carries a charge $25 \times 10-{ }^{10} \mathrm{C}$. The electrostatic potential at a distance of 20 cm from the centre will be:
(A) $15 \mathrm{~V}(\mathbf{B}) 25 \mathrm{~V}(\mathbf{C}) 35 \mathrm{~V}(\mathbf{D}) 45 \mathrm{~V}$

