	(Pages : 3)	1884
Name :		
	ester M.C.A. Degree Examinati L ANALYSIS AND OPTIMIZ	,
Гіme : 3 Hours		Max. Marks: 100
	PART – A	
Answer all questions. E	ach question carries 4 marks.	
1. What are Inherent err	ors and Truncation errors in numeric	cal calculations?
2. Find the root of the ed	quation $xe^x - 3 = 0$, lies between 1 as	nd 2, by False – Position.
3. How to find the $\sqrt[3]{5}$ b	y iteration?	
4. What is difference be	tween objectives and constraints?	
5. Explain the artificial v	ariable technique.	
6. Define canonical form	1.	
7. What is basic feasible	solution?	
8. Explain significance of	of duality in linear programming appl	ication.
9. What is slack and sur	plus variables ?	
10. Explain dual simplex	method.	(10×4=40 Marks)
	PART – B	
Answer any two question	ons from each Module. Each questi	on carries 10 marks.

Module – I

11. a) Find positive root of the equation $ne^x = 1$ between 0 and 1.

- 12. a) Derive Newton's backward difference interpolation formula.
 - b) Some values of "x" and $\log_{10}(x)$ are (300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find \log_{10} (301).
- 13. The table gives distances in nautical miles of the visible Horizon for the given heights in feet above earth's surface

Height (x): 100 150 200 250 300 350

Distance (y): 10.63 13.03 15.04 16.81 18.42 19.9

Find values of "y" when x = 218 and 360 ft.

Module - II

14. Maximize $x_1 + 3x_2 + 3x_3 - x_4$

Subject to constraints:

$$x_1 + 2x_2 + 3x_3 = 15$$

$$2x_1 + x_2 + 5x_3 = 20$$

 $x_1 + 2x_2 + x_3 + x_4 = 10$ where x_1, x_2, x_3 and x_4 are all positive.

15. Using the Duality method of solution,

Maximize $Z = 5x_1 - 2x_2 + 3x_3$ such that

$$2x_1 + 2x_2 - x_3 \ge 2$$

$$3x_1 - 4x_2 \le 3$$

$$x_2 + 2x_3 \leq 5 \text{ and}$$

$$x_1, x_2, x_3 \ge 0.$$

16. A mobile company manufactures two models. Daily capacity of Model A is 150 and that of Model B is 160. For the type A the unit uses 16 discrete components and for type B 21 discrete components. The maximum daily availability of components is 1020. The profit per model A and B are Rs. 250 and Rs. 300 respectively. Formulate the problem as LPP and solve by graphically to find optimum daily production.

Module – III

17. Solve the Assignment problem.

	I	II	III	IV	V
A	8	4	2	6	1
В	0	9	5	5	4
C	3	8	9	2	6
D	4	3	1	0	3
E	9	5	8	9	5

18. For the transport network find the maximum flow:

19. Find an initial basic feasible solution to the following transportation problem. Also show that this solution is the optimum solution.

	$\mathbf{D}_{_{1}}$	D_2	D_3	$\mathbf{D}_{_{4}}$	$\mathbf{D}_{\mathfrak{s}}$	Supply	
O ₁	7	7	10	5	11	45	
O_2	4	3	5	6	13	90	
O_3	9	8	6	7	5	95	
$O_{_4}$	12	13	10	6	3	75 .	(10×6=60 Marks)
O ₅	5	4	5	6	12	05	
Demand	20	80	50	75	85		