Code: AE08
Time: 3 Hours

Subject: CIRCUIT THEORY \& DESIGN
Max. Marks: 100

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Current of 3 A flows through a resistance of 20 ohms. The energy dissipated in the resistor per minute is
(A) 1.80 W
(B) 0.18 W
(C) 3.6 W
(D) 180 W
b. A Hurwitz polynomial has
(A) only zeros in the left half of s-plane
(B) only poles in the left half of s-plane
(C) zeros anywhere in s-plane
(D) poles anywhere in s-plane
c. The function $Z(s)$ is $Z(s)=s(s+3) /(s+2)(s+4)$
(A) $\mathrm{L}-\mathrm{C}$
(B) R-C
(C) R-L
(D) R-L-C network
d. In a two port network, the condition for reciprocity in terms of h -parameters is
(A) $\mathrm{h}_{12}=\mathrm{h}_{21}$
(B) $\mathrm{h}_{11}=\mathrm{h}_{22}$
(C) $\mathrm{h}_{11}=-\mathrm{h}_{22}$
(D) $\mathrm{h}_{12}=-\mathrm{h}_{21}$
e. A series RLC circuit consist of resistance 10 ohms , and inductance of 0.1 H , capacitance of $0.001 \mu \mathrm{~F}$. The frequency at resonance
(A) $10^{5} \mathrm{~Hz}$
(B) $10^{7} \mathrm{~Hz}$
(C) 15920 Hz
(D) 920 Hz
f. In a linear network, the ratio of voltage excitation to current response is unilateral when the position of excitation and response are interchanged. This is
(A) Principle of duality
(B) Reciprocity theorem
(C) Tellegan's theorem
(D) Principle of superposition
g. If the source impedance is $3+4 \mathrm{j}$, then for maximum power transfer, the load impedance should be
(A) 3
(B) 4
(C) $3-4 \mathrm{j}$
(D) -4 j
h. An RC circuit has a capacitor $\mathrm{C}=2 \mu \mathrm{~F}$ in series with a resistance $\mathrm{R}=1 \mathrm{M} \Omega$. The time of 6 secs will be equal to
(A) one time constant
(B) two time constant
(C) three time constant
(D) none of these
i. Quality of a coil is defined as
(A) $\mathrm{Q}=\omega \mathrm{L} / \mathrm{R}$
(B) $\mathrm{Q}=\omega \mathrm{C} / \mathrm{R}$
(C) $\mathrm{Q}=\omega \mathrm{R} / \mathrm{L}$
(D) $\mathrm{Q}=\omega \mathrm{CL} / \mathrm{R}$
j. If all the elements in a particular network are linear, then the superposition theorem would hold, when the excitation is
(A) dc only
(B) ac only
(C) ac or dc
(D) an impulse

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.
Q. 2 a. Determine $\mathrm{i}(0+)$, $\mathrm{di} / \mathrm{dt}(0+)$, and $\mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}(0+)$ in the given Fig. 1 if $\mathrm{V}=10 \mathrm{~V}$, $\mathrm{R}=10 \Omega, \mathrm{~L}=1 \mathrm{H}, \mathrm{C}=10 \mu \mathrm{~F}$ and $\mathrm{V}_{\mathrm{c}}=(0)$.

Fig. 1

Fig. 2
b. In the given Fig.2, find the initial values of all three loop currents when a steady state is reached with the switch K open, and at $t=0$ the switch is closed.
Q. 3 a. Using Nodal analysis, find the node voltages V_{1} and V_{2} in Fig.3.

AMIETE - ET (OLD SCHEME)
b. In the network shown in Fig. $4 \mathrm{v}_{1}=4 \mathrm{~V}, \mathrm{v}_{4}=4 \cos 2 \mathrm{t}$ and $\mathrm{i}_{3}=2 \mathrm{e}^{-t / 3}$. Determine i_{2}.
c. Applying Kirchhoff's laws to different loops in Fig.5, find the values of V_{1} and V_{2}.

Q. 4 a. In the given Circuit (Fig.6) Find the current in the resistor R_{2}. Assuming capacitor C_{2} is initially uncharged. The switch K is closed at $\mathrm{t}=0$.
b In the network given in Fig. 7 the switch closes at $t=0$. It is given that $\mathrm{v}(\mathrm{t})=0.1 \mathrm{e}^{-5 \mathrm{t}}, \mathrm{R}_{2}=2 \mathrm{ohms}$ and all intial currents and voltages are zero. Find the current i_{2} by Norton's theorem.
(8)
Q. 5 a. Consider the network in Fig. 8 find the values of node voltages $V_{1}(t)$ and $\mathrm{V}_{2}(\mathrm{t})$. Assume at $\mathrm{t}=0$, switch is open. It is given that $\mathrm{L}=1 / 2 \mathrm{H}, \mathrm{C}=1 \mathrm{~F}$, $\mathrm{G}=1 \mathrm{mho}, \mathrm{V}=1 \mathrm{~V}$.

b. What do you understand by sinusoidal steady state system?

For the network of Fig.9, find i_{2} in the steady state if $v_{1}=\cos 2 t$, the values of $L=1 H, C=1 / 2 F$ and $R=2 \Omega$.

Fig. 9
Q. 6 a. Calculate the following for half wave alternating current
(i) Average value
(ii) Rms Value
(iii) Form factor
$(4+2+2)$
b. State and prove Maximum Power transfer theorem. Give its applications also. With the help of superposition theorem, obtain the value of current I and voltage V_{o} in the Fig. 10 .

Fig. 10

Q. 7 a. Find the voltage ratio V_{2} / V_{1}, the current ratio I_{2} / I_{1}, input impedance Z_{1} and the transfer impedance Z_{21} for the network given in Fig.11.
b. Find the short circuit admittance functions y_{11} and y_{21} for the network in Fig. 12.

Q. 8 a. Synthesise the Cauer-I form of given admittance function $\mathrm{z}(\mathrm{s})=\frac{(\mathrm{s}+1)(\mathrm{s}+3)}{\mathrm{s}(\mathrm{s}+2)}$
b. Check whether the polynomial $s^{5}+2 s^{3}+4 s$ is Hurwitz or not.
Q. 9 a. Design constant k of low pass filter having cut off frequency $=3000 \mathrm{~Hz}$ and nominal characteristic impedance $\mathrm{R}_{0}=600 \Omega$.
b. Design and derive T and π-sections low pass filter for nominal characteristic impedance $\mathrm{R}_{0}=600 \Omega$, cut off frequency $=1800 \mathrm{~Hz}$ and infinite attenuation frequency $\mathrm{f}_{\infty}=2 \mathrm{KHz}$.

