Code: AE08 Time: 3 Hours Subject: CIRCUIT THEORY & DESIGN Max. Marks: 100

 (2×10)

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Current of 3A flows through a resistance of 20 ohms. The energy dissipated in the resistor per minute is

(A) 1.80 W	(B) 0.18 W
(C) 3.6 W	(D) 180 W

- b. A Hurwitz polynomial has
 - (A) only zeros in the left half of s-plane
 - (B) only poles in the left half of s-plane
 - (C) zeros anywhere in s-plane
 - (D) poles anywhere in s-plane
- c. The function Z(s) is Z(s)=s(s+3)/(s+2) (s+4)

(A) L-C	(B) R-C
(C) R-L	(D) R-L-C network

d. In a two port network, the condition for reciprocity in terms of h-parameters is

(A)	$h_{12} = h_{21}$	(B) $h_{11} = h_{22}$
(C)	$h_{11} = -h_{22}$	(D) $h_{12} = -h_{21}$

e. A series RLC circuit consist of resistance 10 ohms, and inductance of 0.1H, capacitance of $0.001 \,\mu\text{F}$. The frequency at resonance

(A)	10^{5} Hz	(B) 10^7 Hz
(C)	15920Hz	(D) 920Hz

f. In a linear network, the ratio of voltage excitation to current response is unilateral when the position of excitation and response are interchanged. This is

A) Principle of duality	(B) Reciprocity theorem
-------------------------	--------------------------------

- (C) Tellegan's theorem (D) Pri
- (**D**) Principle of superposition

1

g. If the source impedance is 3 + 4j, then for maximum power transfer, the load impedance should be

(A)	3	(B) 4
(C)	3-4j	(D) -4j

h. An RC circuit has a capacitor $C = 2 \mu F$ in series with a resistance R=1M Ω . The time of 6 secs will be equal to

(A)	one time constant	(B) two time constant
(C)	three time constant	(D) none of these

i. Quality of a coil is defined as

(A) $Q = \omega L/R$	(B) $Q = \omega C/R$
(C) Q = $\omega R/L$	(D) $Q = \omega CL/R$

j. If all the elements in a particular network are linear, then the superposition theorem would hold, when the excitation is

(A) dc only	(B) ac only
(C) ac or dc	(D) an impulse

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Determine i(0+), di/dt(0+), and $d^{2}i/dt^{2}$ (0+) in the given Fig.1 if V=10 V, R= 10 Ω , L = 1 H, C= 10 μ F and V_c=(0). (8)

- b. In the given Fig.2, find the initial values of all three loop currents when a steady state is reached with the switch K open, and at t=0 the switch is closed.
- **Q.3** a. Using Nodal analysis, find the node voltages V_1 and V_2 in Fig.3. (6)

AE08 / JUNE - 2011

AMIETE - ET (OLD SCHEME)

- b. In the network shown in Fig.4 v_1 = 4 V, v_4 = 4 cos 2t and $i_3 = 2e^{-t/3}$. Determine i_2 . (6)
- c. Applying Kirchhoff's laws to different loops in Fig.5, find the values of V_1 and V_2 . (4)

- **Q.4** a. In the given Circuit (Fig.6) Find the current in the resistor R_2 . Assuming capacitor C_2 is initially uncharged. The switch K is closed at t=0. (8)
 - b In the network given in Fig.7 the switch closes at t=0. It is given that v (t)= 0.1 e^{-5t}, R₂= 2 ohms and all initial currents and voltages are zero. Find the current i₂ by Norton's theorem.
 (8)
- Q.5 a. Consider the network in Fig.8 find the values of node voltages V_1 (t) and V_2 (t). Assume at t=0, switch is open. It is given that L=1/2 H, C = 1 F, G=1mho, V=1V. (8)

b. What do you understand by sinusoidal steady state system? For the network of Fig.9, find i_2 in the steady state if $v_1 = \cos 2t$, the values of L=1 H, C= $\frac{1}{2}$ F and R=2 Ω . (4+4)

- Q.6 a. Calculate the following for half wave alternating current (i) Average value (ii) Rms Value (iii) Form factor (4+2+2)
 - b. State and prove Maximum Power transfer theorem. Give its applications also. With the help of superposition theorem, obtain the value of current I and voltage V_o in the Fig.10. (4+4)

- **Q.7** a. Find the voltage ratio V_2/V_1 , the current ratio I_2/I_1 , input impedance Z_1 and the transfer impedance Z_{21} for the network given in Fig.11. (8)
 - b. Find the short circuit admittance functions y_{11} and y_{21} for the network in Fig.12. (8)

- **Q.8** a. Synthesise the Cauer–I form of given admittance function $z(s) = \frac{(s+1)(s+3)}{s(s+2)}$ (8)
 - b. Check whether the polynomial $s^5 + 2s^3 + 4s$ is Hurwitz or not. (8)
- **Q.9** a. Design constant k of low pass filter having cut off frequency= 3000Hz and nominal characteristic impedance $R_0 = 600\Omega$. (8)
- b. Design and derive T and π -sections low pass filter for nominal characteristic impedance $R_0 = 600\Omega$, cut off frequency=1800Hz and infinite attenuation frequency $f_{\infty} = 2KHz$. (8) AE08 / JUNE - 2011 4 AMIETE - ET (OLD SCHEME)