December 2005

Code: D-02
Time: 3 Hours

Subject: APPLIED MECHANICS

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 A must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 A Choose the correct or best alternative in the following:
(2x10)
a. If the line of action of all the forces meet at a single point, then the force system is known as
(A) Collinear
(B) Coplanar
(C) Concurrent
(D) Parallel.
b. A Free body diagram of an hinged support contains
(A) Vertical reaction only
(B) Horizontal reaction only
(C) Both horizontal and vertical reactions
(D) Horizontal, vertical reactions and a moment
c. For a cantilever beam of length ' L ' having a point load ' P ' at its free end, the bending moment at the fixed end is given by
(A) PL
(B) $(\mathrm{P} / 2) \mathrm{L}$
(C) P / L
(D) 2 PL
d. The kinetic energy of a body of mass ' m ' moving with a velocity ' v ' is equal to
(A) mv
(B) $\left(\mathrm{m}^{2} \mathrm{v}\right) / 2$
(C) $(\mathrm{mv}) / 2$
(D) $\left(m v^{2}\right) / 2$
e. A triangular three member frame is an example of \qquad frame
(A) Perfect
(B) Imperfect
(C) Redundant (D) Collapsible
f. The unit of bending moment in SI units is
(A) Kg / m
(B) Kg-m
(C) N / m
(D) $\mathrm{N}-\mathrm{m}$

B State which of the statement is true and which are false.
g. First moment of area about the centroidal axis is positive
h. A body moving along a curved path has only tangential acceleration
i. The instantaneous center of rotation of a body lies always outside the body
j. Velocity of a body is a scalar quantity

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Define Lami's theorem.
b. A smooth sphere weighing 200 N is lying in a triangular groove as shown in Fig.1. Draw the free body diagram and find the reactions at the surfaces of contact, assuming groove is also smooth. (8)

Fig. 1
c. A system of forces in equilibrium is shown in Fig.2. Determine the force ' P ' and the angle ' θ '.

Fig. 2
Q. 3 a. Derive the expression for moment of inertia of a circular lamina of radius ' r ' about a horizontal axis passing through the centre.
b. Find the distance of centroid of the shaded portion shown in Fig. 3 about axis AB .
(8)

Fig. 3
Q. 4 a. Define:
(i) Static friction
(ii) Coefficient of friction
(iii) Angle of friction
(iv) Angle of repose
b. A body resting on a horizontal rough surface requires a pull of 180 N inclined at 30° to the surface for just to move it. It was found that a push of 220 N inclined at 30° to the surface was able to just move the body. Determine the weight of the body and coefficient of friction between the body and the surface.
Q. 5 Using method of joints, determine the forces and their nature in all the members of the pin jointed plane truss shown in Fig. 4. Tabulate the results.
(16)

Q. 6 a. Explain (i) Impulse-momentum principle (ii) Law of conservation of linear momentum.
b. The angle of rotation of a body is given by the equation:

$$
\theta=2 \mathrm{t}^{3}-5 \mathrm{t}^{2}+8 \mathrm{t}+6
$$

Where θ is in radians and t is in secs.
Determine (i) angular velocity (ii) angular acceleration of the body
When $\mathrm{t}=0$ and $\mathrm{t}=4$ secs.
Q. 7 a. Define:
(i) Hooke's law
(ii) Moment of Inertia
(iii) Poisson's ratio
(iv) Thermal stress
b. A hollow cast iron cylinder 4 m long, 300 mm outer diameter, and thickness of metal 50 mm is subjected to a central load on the top when standing straight. The stress produced is $75000 \mathrm{k} \mathrm{N} / \mathrm{m}^{2}$. Assume Young's modulus for cast iron as $1.5 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$. Determine the magnitude of the load applied, longitudinal strain and total decrease in length.
Q. 8 a. Derive the Torque equation for pure torsion of shaft stating clearly the assumptions made.

$$
\begin{equation*}
\frac{\mathrm{fs}}{\mathrm{R}}=\frac{\mathrm{C} \mathrm{\theta}}{1} \tag{6}
\end{equation*}
$$

b. Determine the diameter of a solid shaft which will transmit 90 kW at 160 rpm , if the shear stress in the shaft is limited to $60 \mathrm{~N} / \mathrm{mm}^{2}$. Find also the length of the shaft, if the twist must not exceed 1 degree over the entire length. Take C $=8 \mathrm{x}$ $10^{4} \mathrm{~N} / \mathrm{mm}^{2}$
Q. 9 a. Define point of contraflexure.
(2)
b. For the beam loaded as shown in Fig.5, draw the shear force and bending moment diagrams.
(14)

Fig. 5

Fig. 5

