Total number of printed pages – 7 B. Tech
CPEC 5306

Sixth Semester Examination - 2007

ADVANCED ELECTRONICS CIRCUITS

Full Marks - 70

Time: 3 Hours

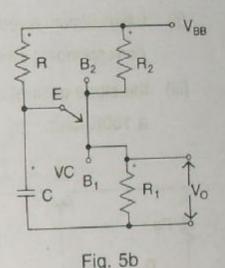
Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate full marks for the questions.

- Answer the following questions: 2x10
 - (a) What do you mean by frequency response? Write down the importance of frequency response during design of a filter.

- (b) Differentiate between low pass, high pass, band pass, band reject, and all pass filters with its practical applications.
- (c) Distinguish between wide band and narrow band filters.
- (d) Define 'stable state of a binary'. Write down the conditions required to maintain the stable state.
- (e) What is commutating capacitor ? Why and where is it used ?
- (f) Compare between backward diode and POWER OF KNOWLEDGE conventional diode.
- (g) A 555 timer can be used as a monostable astable multivibrator. Justify.
- .(h) Describe merits of digital PLL over analog PLL.
- (i) How biasing affect the operation of multivibrators?

- been designed to meet the following specifications: fc = 2 kHz, Q = 20 and A_r=10. What modifications are necessary in the filter circuit to change the center frequency fc to 1 kHz keeping the gain and bandwidth constant?
- (a) Design a wide band-pass filter with f_L = 450 Hz, f_H = 3 kHz, and passband gain = 4. Also draw an approximate frequency response plot for the filter. 5


Draw the schematic diagram of a triangular wave generator. Also draw the input and output waveforms.

- (a) Explain the operation of unsymmetrical triggering and symmetrical triggering of the binary.
 - (b) Describe the operation of collector coupled monostable multivibrator and draw its waveform.

- (a) Draw the characteristics for voltagecontrolled negative-resistance switching circuits.
 5
 - (b) Find out the expression for rise time of cascaded stages.
- 5. (a) Explain operation and characteristics UJT.
 - (b) (i) A relaxation oscillator using an UJT, shown in the fig.5b, is to be designed for triggering an SCR. The UJT has the following data: $\eta = 0.72, \ lp = 18.0 \ V, \ Vv = 1.0 \ V,$ $lv = 2.5 \ mA, \ R_{BB} = 5 \ k\Omega, \ Normal leakage current with emitter open = 4.2 mA.$

The firing frequency is 2 kHz. For $C = 0.04 \mu F$, compute the values of R1, R2, and R3.

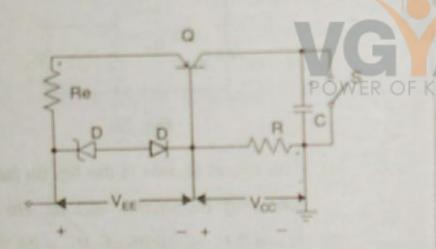
(ii) If the firing frequency of the SCR is changed by varying resistor R, obtain the maximum and minimum values of R and the corresponding frequencies.

6. (a) The circuit shown in the fig. 6a has the following parameter values: Re = 1K, R = 6.8 K, C = 0.05 μ F, V_{YY} = 24 V, and V_Z = 8.0V. The transistor CB h-parameters are α = 0.98, h_{ib} = 20 Ω , h_{rb} = 3×10⁻⁴,

5

 $h_{\rm sp} = 0.5 \, \mu \rm mho$. The temperature coefficient of the avalanche diode is 0,002 per cent/°C. All the devices are silicon. Calculate

- the sweep speed
- the maximum sweep voltage and the (ii) corresponding sweep duration
- (iii) the slope error at no load and with a 100K load.


Briefly write down about instrumentation amplifier and its application.

- Describe 555 timer as an astable multivibrator.
 - (b) Derive the expression for free-running frequency four, the lock range f and the capture range fc-
- Write notes on:

5×2

(a) Tunnel diode

Time base generator.

A constant-current sweep circuit involving temperature compensation.

Contd.