Diplete - ET (OLD SCHEME)

Code: DE15
Time: 3 Hours

JUNE 2009

Subject: CONTROL ENGINEERING

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. In terms of Bode plot, the system is stable if
 - (A) PM = GM

- **(B)** PM and GM, both positive
- **(C)** PM and GM, both negative
- (D) PM negative but GM positive
- b. The lag compensation in control system is achieved by
 - (A) Adding zeros in the transfer function
 - **(B)** adding poles in the transfer function
 - (C) Both (A) and (B)
 - (D) none of these

c. Consider the function
$$F(s) = \frac{5}{s(s^2 + s + 2)}$$
 where $F(s)$ is laplace transform of $f(t)$. $\lim_{t \to \infty} f(t)$ is equal to

(A) 5/2

(B) one

(C) zero

- **(D)** none of the above
- d. As compared to closed loop system, an open loop system is:
 - (A) More stable as well as more accurate
 - (B) less stable as well as less accurate
 - **(C)** More stable but less accurate
 - (D) less stable but more accurate

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$$

- e. The eigen value of the matrix
 - (A) -1, -2, -3

(B) 0, -3, -4

(C) 0, 0, -4

- **(D)** None of the above
- f. In the control system shown in Fig 1, the controller which can give zero steady state error to a ramp input, with K=9 is

- (A) proportional type
- **(B)** integral type
- (C) derivative type
- **(D)** proportional plus derivative type
- g. The output response of a linear system is the system transfer function when the input is:
 - (A) a step signal

(B) a ramp signal

- (C) an impulse signal
- (D) a sinusoidal signal
- h. When the signal flow graph is shown in the Fig.2, the overall transfer function will be

- (A) $\frac{C}{R} = G$ (C) $\frac{C}{R} = \frac{G}{(1 + H_1)(1 + H_2)}$
- (B) $\frac{\ddot{R}}{R} = \frac{\ddot{G}}{1 + H_2}$ (D) $\frac{\ddot{C}}{R} = \frac{\ddot{G}}{1 + H_1 + H_2}$
- i. For the critically damped condition, the damping ratio is
 - (A) Zero

- (B) equal to one
- **(C)** Any value greater than one
- **(D)** any value less than one
- j. In position control system, the device used for providing rate feedback voltage is called
 - (A) Potentiometer

- (B) synchro-transmitter
- (C) synchro-receiver
- (D) tachogenerator

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Distinguish between the following:

- (i) Static and Dynamic system
- (ii) Closed loop and Open loop system
- (iii) Linear and non-linear syst
- b. Use force voltage analogy electrical network given belov

Q.3 a. Figure given below is a block diagram of a linear feedback system. Obtain a signal flow graph for the system and hence obtain overall gain by using mason's gain formula.
(10)

b. Describe the principle of operation of LVDT.

(6)

Q.4 a. A second order control system is represented by a transfer function given below:

$$\frac{\theta_{o}(s)}{T(s)} = \frac{1}{Js^2 + fs + K}$$