

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 ELECTROMAGNETIC WAVES & RADIATING SYSTEMS SEMESTER - 4

Time	:: 3]	Hours				[Full Marks : 70
	٠.		Grot	1 p – A		
			(Multiple Choice			
1.	Cho	ose th	$10 \times 1 = 10$			
	i)	The	magnetic flux density \overrightarrow{B} and v	ector poter	itial \overrightarrow{A} are related	as
	*	a)	$\vec{B} = \nabla \times \vec{A}$	b)	$\vec{A} = \nabla \times \vec{B}$	
	**************************************	c)	$\vec{B} = \nabla \cdot \vec{A}$	d)	$\overrightarrow{A} = \nabla \cdot \overrightarrow{B}.$	
	ii)	A po	tential field is given by V = 3	κ ² y – yz. Τ	he electric field at	P(2,-1,4) is
		a)	127-87 V/m	b)	127- J V/m	
		c)	$12\overrightarrow{l} + 8\overrightarrow{j} + \overrightarrow{k} \text{ V/m}$	d)	- 127 - 87 - K	V/m.
	m)	The	electric field lines & equipoten	tial lines		
		a)	are parallel to each other			
	• .	b)	are one and the same			
		c)	cut each other orthogonally			
		d)	can be inclined to each other	at any ang	gle.	
	iv)	A tra	ensmission line of length $\frac{\lambda}{4}$ sho	rted at far	end behaves like	
		a)	series resonant circuit	b)	parallel resonant	t circuit
		c)	pure inductor	d)	pure capacitor.	
	v)	Max	well's equation $\nabla \times \overrightarrow{H} = \overrightarrow{J} + \overrightarrow{D}$	represent	t s	
		a)	Gauss's law in magnetism			
		b)	Kirchhoff's current law for di	lrect currer	nt	
		c)	Biot-Savart law			
		d)	Generalized Ampere's circuit	al law.		

24506-(IV)-E

vi)				ing at a normal incidence in air with MHz. The slab is Teflon ($\epsilon_r = 2.1$,					
	ε 11/	$\epsilon^1 = 0$). The amplitude of the refle	cted v	wave is					
	a)	18·34 V/m	b)	36·68 V/m					
	c)	- 18·34 V/m	d)	- 36·68 V/m.					
vii)	If th	e frequency of the incident wave	inaté	ases by a factor of 4, the depth to					
	whic	which a wave penetrates a conducting material							
	a)	increases by a factor of 2	b)	increases by a factor of 4					
•	c)	decreases by a factor of 2	d)	decreases by a factor of 4.					
viii) The MUF of transmission between two stations 500 km apart at $f_{\rm c}$									
	and	minimum value of incident angle i	= 45° :	is regardado en especial de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela composic					
	a)	0.7 MHz	b)	25-4 MHz					
åł.	c)	12.7 MHz	d)	18 MHz.					
ix)	A qu	A quarter-wave monopole antenna operating in air at a frequncy of 1 MHz must							
	have	e an overall length (l) of	er se						
	a)	l >> λ	b)	150 m					
•	c)	75 m	d)	l << λ.					
x)	The	radiation resistance of a dipole, h	aving	a length of 4 cm, radiating 50 W of					
	pow	er at a frequency of 500 MHz is							
	a)	3.5 Ω	b)	0-82 Ω					
¥*);	c)	1.75 Ω	d)	7.0 Ω.					
xi)	Ohn	n's law is obeyed by							
	a)	conduction current	b)	convection current					
	c)	conduction & convection current	d)	none of these.					
xii)	The	direction of propagation of EM way	e is ol	btained from					
	a)	E×H	b)	E.H					
	c)	E	ď d)	н.					
506-()	(V)-B								

Group - B

(Short Answer Type Questions)

Answer any three questions.

 $3 \times 5 = 15$

2. Define the term i) VSWR and ii) 'Reflection co-efficient' for transmission' line.

Explain the relationship between them.

- 3. Prove that $\nabla \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$. The symbols have usual meaning.
 - . A 2m long lossless transmission line has an impedance of 300 Ω . The velocity of propagation is 2.5×10^8 m/s. The load has an impedance of 300 Ω with sending end voltage being 60V at 100 MHz. Find :
 - a) The phase constant
 - b) The load voltage
 - c) The load current
 - d) The load reflection coefficient &
 - e) Standing wave ratio.
- 5. Why is ionosphere important for radiowave propagation? Describe the different layers of ionosphere.
- 6. What do you mean by magnetic vector potential? Write down the Maxwell's equations for time varying electromagnetic fields, when the medium is lossless, linear, isotropic, homogeneous and source free. 3+2

Group - C

(Long Answer Type Questions)

		Answer any three questions. $3 \times 15 = 45$
•	a)	Find the expression of Radiation resistance of a short electric dipole with uniform current distribution.
	b)	Define complex Poynting vector.
	c) -	Explain the concept of skin depth & find out an expression for that.
3.	a)	Derive an expression for the input impedance Z_{in} of a lossless transmission line,
		in terms of relevant parameters, when the line is terminated in load impedance \boldsymbol{Z}_L .
	b)	Show that for a lossless transmission line the impedance of a line repeats over every $\frac{\lambda}{2}$ distance.
	c)	A transmission line with air as dielectric has $Z_0 = 50\Omega$ and a phase constant of
		3 rad/m at 10 MHz. Find the inductance & capacitance of the line.
).	a)	What is electromagnetic interference?
	b)	Why does the short wave radio signal propagate with very low attenuation at night? Describe the sky-wave propagation of EM waves. 3 + 6
	c)	What is fading? Briefly describe the diversity techniques to reduce the effect of fading. $1+3$
0.	a)	Obtain the Poynting theorem for the conservation of energy in an electromagnetic field and discuss the physical significance of each term in resulting equation. 6
	b)	In free space $E(z, t) = 50 \cos(\omega t - \beta z)$ V/m. Find the average power crossing a circular area of radius 5m in the plane $x = \text{constant}$.
	c)	Derive the equation of continuity for time varying fields.
11.	a)	State & explain Faraday's law.
e y e e	b)	Derive the induced emf when a stationary loop is in the time varying B fields. 4
	c)	Determine the magnetic field intensity at a point P due to a current carrying
		filamentary conductor AB carrying current I along Z axis with its upper and lower ends subtending angles α_1 and α_2 respectively.