Seat No.:	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-III Examination December 2009

Subject code: 130701 Subject Name: Digital Logic Design

Date: 21 /12 /2009 Time: 11.00 am – 1.30 pm Total Marks: 70

Instructions:

Q.5

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Convert the following numbers to decimal	07
		(i) $(10001.101)_2$ (ii) $(101011.11101)_2$ (iii) $(0.365)_8$	
		(iv) A3E5 (v) CDA4 (vi) (11101.001) ₂ (vii) B2D4	
	(b)	Perform the operation of subtractions with the following binary	07
		numbers using 2' complement	
		(i) 10010 - 10011 (ii) 100 -110000 (iii) 11010 -10000	
Q.2	(a)	Obtain the simplified expressions in sum of products for the	07
		following Boolean functions:	
		(i) $F(A,B,C,D,E) = \sum (0,1,4,5,16,17,21,25,29)$	
		(ii) $A'B'CE' + A'B'C'D' + B'D'E' + B'C D'$	
	(b)	Demonstrate by means of truth tables the validity of the following	07
		Theorems of Boolean algebra	
		(i) De Morgan's theorems for three variables	
		(ii) The Distributive law of + over-	
		OR	
	(b)	Implement the following Boolean functions	07
		(i) $F = A (B + CD) + BC'$ with NOR gates	
		(ii) $F = (A + B') (CD + E)$ with NAND gates	
Q.3	(a)	Design a combinational circuit that accepts a three bit binary	07
		number and generates an output binary number equal to the square	
		of the input number.	
	(b)	Discuss 4-bit magnitude comparator in detail	07
		OR	
Q.3	(a)	With necessary sketch explain full adder in detail	07
	(b)	Design a combinational circuit that generates the 9' complement of a BCD digit,	07
Q.4	(a)	Discuss D-type edge- triggered flip-flop in detail	07
~··	(b)	Design a counter with the following binary sequence:0,4,2,1,6and	07
	(0)	repeat (Use JK flip-flop)	0,
		OR	
Q.4	(a)	Design a counter with the following binary sequence:0,1,3,7,6,4,and	07
	()	repeat.(Use T flip-flop)	
	(b)	(i)With neat sketch explain the operation of clocked RS flip	05
	()	(ii)Show the logic diagram of clocked D	02
Q.5	(a)	With necessary sketch explain Bidirectional Shift Register with	07
`	` '	parallel load.	
	(b)	Draw the state diagram of BCD ripple counter, develop it's logic	07
	` /	diagram, and explain it's operation.	
		OP	

(a) Construct a Johnson counter with Ten timing signals.

(b) Discuss Interregister Transfer in detail

07

07