\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-III Examination December 2009

Subject code: 130701
 Date: 21 /12 /2009
 Time: 11.00 am - 1.30 pm
 Total Marks: 70
 Instructions:
 1. Attempt all questions.
 2. Make suitable assumptions wherever necessary.
 3. Figures to the right indicate full marks.

Subject Name: Digital Logic Design
Q. 1 (a) Convert the following numbers to decimal 07
(i) $(10001.101)_{2}$
(ii) $(101011.11101)_{2} \quad$ (iii) $(0.365)_{8}$
(iv) A3E5 (v) CDA4 (vi) (11101.001) (vii) B2D4
(b) Perform the operation of subtractions with the following binary 07
numbers using 2^{\prime} complement
(i) 10010-10011
(ii) 100-110000 (iii) 11010-10000
Q. 2 (a) Obtain the simplified expressions in sum of products for the $\mathbf{0 7}$
following Boolean functions:
(i) $\quad F(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\sum(0,1,4,5,16,17,21,25,29)$
(ii) $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CE} E^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{B}^{\prime} \mathrm{D}^{\prime} \mathrm{E}^{\prime}+\mathrm{B}^{\prime} \mathrm{C} \mathrm{D}^{\prime}$
(b) Demonstrate by means of truth tables the validity of the following $\mathbf{0 7}$
Theorems of Boolean algebra
(i) De Morgan's theorems for three variables
(ii) The Distributive law of + over-

OR

(b) Implement the following Boolean functions 07
(i) $\mathrm{F}=\mathrm{A}(\mathrm{B}+\mathrm{CD})+\mathrm{BC}^{\prime}$ with NOR gates
(ii) $\mathrm{F}=\left(\mathrm{A}+\mathrm{B}^{\prime}\right)(\mathrm{CD}+\mathrm{E})$ with NAND gates
Q. 3 (a) Design a combinational circuit that accepts a three bit binary 07
number and generates an output binary number equal to the square
of the input number.
(b) Discuss 4-bit magnitude comparator in detail $\mathbf{0 7}$

OR

Q. 3 (a) With necessary sketch explain full adder in detail 07
(b) Design a combinational circuit that generates the 9^{\prime} complement of a $\mathbf{0 7}$ BCD digit,
Q. 4 (a) Discuss D-type edge- triggered flip-flop in detail 07
(b) Design a counter with the following binary sequence:0,4,2,1,6and
repeat (Use JK flip-flop)

OR
Q. 4 (a) Design a counter with the following binary sequence:0, $1,3,7,6,4$, and $\mathbf{0 7}$
repeat.(Use T flip-flop)
(b) (i)With neat sketch explain the operation of clocked RS flip 05
(ii)Show the logic diagram of clocked D 02
Q. 5 (a) With necessary sketch explain Bidirectional Shift Register with 07 parallel load.
(b) Draw the state diagram of BCD ripple counter, develop it's logic $\mathbf{0 7}$ diagram, and explain it's operation.

OR
Q. 5 (a) Construct a Johnson counter with Ten timing signals. 07
(b) Discuss Interregister Transfer in detail

