12

8

12

10

20

[Total Marks: 100

(3 Hours)

N.B.(1) Question No. 1 is compulsory.

- (2) Attempt any four from the remaining questions.
- (3) Assume suitable data if necessary.
- 1. (a) Derive the expression for stability factor S for collector to base bias and self bias circuit.
 - (b) In the circuit shown below, $V_{CC} = 24$ V, $R_{C} = 10$ K and $R_{E} = 270$ Ω . If a silicon transistor is used with $\beta = 45$ and if under quiescent conditions $V_{CE} = 5$ V, determine (i) R (ii) the stability factor S.

- 2. (a) For dual input balanced output differential amplifier find out expressions for I_{CQ}, V_{CEQ}, differential mode voltage gain, input and output resistances.
 - (b) The following specifications are given for the dual input, balanced output bipolar differential amplifier:—

$$R_C = 2.2$$
 K, $R_E = 4.7$ K, $R_S = 50$ Ω , $V_{CC} = 10$ V, $V_{EE} = -10$ V, $\beta = 100$, $V_{BE} = 0.7$ V.

- (i) I_{CO} and V_{CEO}
- (ii) Differential mode voltage gain
- (iii) Input and output resistances.
- 3. (a) Explain current limit and current foldback protection of LM 723 using suitable diagrams.
 - (b) Design a regulator using LM 723 for $V_0 = 9 \text{ V}$, $I_0 = 3 \text{ Amp}$.
- 4. (a) Draw the functional block diagram of IC 555 timer and explain function of each pin. Also explain how reference voltage is generated.
 - (b) Design a symmetrical square wave generator using IC 555 for output 1 KHz.
- 5. (a) Draw and explain the functional block diagram of voltage controlled oscillator IC. Explain 10 any one application of VCO.
 - (b) Derive the equation for frequency of oscillation and condition for oscillation for RC phase shift oscillator.
- 6. (a) Explain the flash conversion and successive approximation technique. What are their 10 limitations?
 - (b) Draw the circuit diagram of practical differentiator using Op-Amp. Give the advantages of basic differentiator.

7. Write short notes on any two:

- (a) Second order Butterworth active filter.
- (b) Instrumentation Amplifier using Op-Amp.
- (c) Digital to Analog converter using R-2R resistors.
- (d) Zero-crossing detector using Op-Amp working and applications.