B. Sc. (Part I)

Physics Paper I (Mechanics and Properties of Matter)

	ages ne : T	: 4 hree F	-fours	Max, Marks: 40
1	Note	: 1. 2.	All five questions a Draw neat and cleanecessary.	re compulsory. ean diagram wherever
100	Eit	her		ar Tr
1.	a)	Sta	te Newton's laws of m	notion. 3
ē	b)	Obt	tain the components or rdinate system.	of velocity in Polar
	c)	Der	ive Kepler's law of Ar OR	real velocity. 2
2.	p)	Stat	te Keplers laws of plan	netary motion. 3
1 20	q)		ive Newton's first law and law.	of motion from
	r)	pola	ain the components o or co-ordinate system elocity.	of acceleration in using components

P.T.O.		AC - 0013	AC		90		013	AC - 0013	<u>A</u>
25	Derive an expression for depression of the beam supported at two ends and loaded at the middle.	e	2	¥8		ယ) Explain the physical significance of M.I. and radius of gyration.	· <u>Б</u>	
8	Define modulus of rigidity state it's unit.	Ö	. 30	M	(4) (4)	2	Define moment of inertia and state it's C.G.S. unit.	<u>a</u>)	įσ
\leftarrow	State Hooke's law of elasticity.	c)	<u> </u>		an n	95	Either	Πì	
4	Derive an expression for bending moment of a beam.	9		8	n ne 2	4	What is elastic collision. Derive an express of velocity of particles after collision.	z .	
ω.	i) Young's modulus.ii) Bulk modulus.iii) Modulus of rigidity.			e S		2	Show that angular momentum of the system remains constant.	و	Xb.
	Q.	Either a) D	7.	E	*	P 10	State i) Law of conservation of energy. ii) Law of conservation of angular momentum.	Q.	4
N	Derive an expression for moment of inertia of a circular disc about a tangent perpendicular to plane of disc.	3		29.	群 塩	ယ	no external forces act on the system of particles. OR		52
ယ	through it's centre and perpendicular to it's length.				Ts.	2		<u>C</u>	
A24 (5.5)	Derive an expression for moment of inertia of thin uniform rod about an axis passing	<u>a</u>			20 20	ယ	Derive an expression for gravitational potential at a point inside the spherical shell.	চ	(*)
ယ	Derive the relative between moment of inertia and torque.	<u>p</u>	6.	Ÿ6		2		Ę	9
မ	State and prove the theorem of perpendicular axes for a plane laminar body.	c)			Ē		Either	<u> </u>	٥

	r)	A cantilever or breadth and thickness both of 0.01m & 1m long is clamped horizontally at one end, when a load of 1Kg is applied to the free end, the depression of the free end is		
		$4 \times 10^{-2} m$. Calculate Young's modulus of the material of cantilever (g = 9.8m/s^2).	2	
¥1¥	Eit	ner g		
9.	a) .	Define coefficient of viscosity. State it's unit and dimensions.	2	
3/2	ь)	State and prove Bernoulli's theorem.	4	
A) A (5	c)	Define. i) Streamline flow. ii) Turbulent flow.	2	
		OR	1,111	
10.	p)	Define. i) Surface energy. ii) Angle of contact.	2	
	q)	Explain the surface tension on the basis of molecular theory of matter.	3	
3 2	r)	What would be the pressure inside a small air bubble of 1mm radius, situated just below the surface of water? Surface tension of water is dyne/cm and atmospheric pressure is		
		1.02×10^6 dyne/cm ² .	3	

33

¥1.