2/12/12 Code: AE27

Code: AE27 Subject: DIG

Code: AE27 Subject: DIGITAL HARDWARE DESIGN
Time: 3 Hours Max. Marks: 100 DECEMBER 2007

NOTE: There are 9 Questions in all.

• Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.

- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 A Choose the correct or best alternative in the following:	(2x10=20)
--	-----------

- a. With respect to package body in VHDL which of the following is true-
- (A) Package body is always associated with a package declaration.
 - **(B)** A package declaration can have at most one package body associated with it.
 - (C) Name of the package body must be same as that of the package declaration with which it is associated.
 - **(D)** All of the above.
- b. If AB' + A'B = C then AC' + A'C =
 - (A) C

(B) B

(C) 0

- **(D)** 1
- c. Product of sum expression for $f(w, x, y, z) = \prod (0,1,2,3,4,7,8,11,12,13,14,15)$ will yield result
 - (A) (Y+Z)(Y'+Z')(W+X)(W'+X')
- **(B)** (Y+Z')(Y'+Z)(W'+X)(W+X')
- (C) (Y+Z)(W+X)(W'+X')
- **(D)** None of the above
- d. A switching function whose true vertices can be separated by a linear equation from its false ones is called
- (A) Threshold function
- (B) Linearly separable function
- **(C)** Random function
- **(D)** Excitation function
- e. The number of flip-flops required to build a binary counter to count from 0 to 1024 is
 - **(A)** 12

(B) 10

(C) 20

- **(D)** 8
- f. The programmable modules are advantageous for the reasons listed as
 - (A) Cost of IC does not depend on the number of pins but on the number of gates included in the chip.
 - (B) Use of programmable module does not allow modification.
 - (C) Cost of IC depends on the cost of designing the chip.
 - (D) Cost depends on the number of chips of same kind being produced.
- g. A set of micro instructions for control of a computation sequence is called_____
 - (A) Micro-program
- (B) Macro-program
- (C) Sub-program
- **(D)** None
- h. Most typical use of counter is
 - (A) To generate timing signal.
 - **(B)** Generate clock of different frequencies.
 - (C) Both (A) and (B).
 - (D) None.

2/12/12 Code: AE27

B State TRUE or FALSE

- i. A faster alternative to ripple carry adder can be obtained at the cost of more gates with larger number of inputs.
 - (A) TRUE

- (B) FALSE
- j. Multiplexer tree is large multilevel multiplexer network with fewer inputs.
 - (A) TRUE

(B) FALSE

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Simplify the following expressions using K-map also represent them through basic gates

$$f(A,B,C,D,E) = \sum_{i} (2,3,6,10,12,13,14,16,18,22,26,28,29,30)$$

(ii)
$$f(A,B,C,D,E) = \prod (1,3,4,5,9,14,15) d(2,6,11)$$

(8)

b. List the major capabilities provided by VHDL.

(4)

c. List the limitations of two level networks.

(4)

- Q.3 a. What do you mean by combinational and sequential circuits? What are synchronous and asynchronous circuits? (4)
 - b. What are the limitations of a gated latch for using them in a synchronous network?
 - c. Reduce the expression using tabular method and implement the circuit using basic logic gates

$$f2(A,B,C,D) = \prod (0,2,3,6,7,8,9,10,13)$$

(4)

(4)

d. Obtain decomposition for the function

$$f(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{w}'\mathbf{x}'\mathbf{z}' + \mathbf{w}\mathbf{x}'\mathbf{z} + \mathbf{w}'\mathbf{y}\mathbf{z} + \mathbf{w}\mathbf{y}\mathbf{z}'$$

(4)

Q.4 a. For the binary cell define the following timing parameters

(i) Setup

(ii) Pulse width

(iii) Hold time

(iv) Propogation delay

(4)

b. Design a synchronous counter with JK flip-flop and basic gates to count

(8)

(4)

- c. What do you understand by explicit and implicit sequencing of microinstructions?
- **Q.5** a. How are ROM modules classified as per the setting of their contents?

(4)

- b. Differentiate between:
 - (i) PLA's & ROMs
 - (ii) Priority and binary decodes

(4)

c. For the given switching function

 $f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \sum (2, 3, 6, 7, 10, 12, 14, 15)$ Find minimal threshold logic realization

(4)

d. Find the function $f(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3})$ realized by the threshold network shown in Fig.1. (4)

2/12/12 Code: AE27

- Q.6 a. List the components of the RTL data subsystem. Explain each component in brief. (8)
 - b. Write VHDL code entity for 2X4 decoder by using any two type of modeling-
 - (i) structural style
- (ii) Data flow style
- (iii) Behavioral style of modeling

- **(6)**
- c. Implement full adder module using multilevel implementation with XOR & NAND gates.
- (2)
- Q.7 a. State the various advantages and disadvantages of programmable modules.
 - b. Define Mealy and Moore machine.

- (6) (2)
- c. Find a state assignment for the following machine which reduces the inter-dependency of the state-variables. (8)

PS	NS (Next State)	
(Present State)	X=0	X=1
A	Е	В
В	Е	A
С	D	A
D	С	F
Е	F	С
F	Е	С

- Q.8 a. Illustrate the basic concept of microprogramming. What do you understand by the term 'Horizontal microprogramming' and 'Vertical microprogramming'. (8)
 - b. Design a sequential network using D-flip-flops for a system which has the following state diagram (6)

- c. Specify which of the arrays is programmable and which is fixed in a PROM, PAL and FPLA.
- Q.9 a. What do you understand by hazards in switching circuits? What are dynamic hazards? (4)
 - b. Write a mixed style VHDL code for the one-bit full adder using two X-OR three AND & one OR gate. (8)
 - c. Write a VHDL code for a 4-bit shift-register in behavioural style of modelling. (4)