Con. 5250-07.
(REVISED COURSE)
N.B.(1) Question No. 1 which is compulsory.
(2) Answer any four questions from the remaining six questions.
(3) If in doubt make suitable assumption, justify your assumptions and proceed.
(4) Figures to the right indicate full marks.

1. (a) State and prove Cauchys-Integral theorem.
(b) Evaluate $\int_{C}\left(z-z^{2}\right) d z$ where C is the upper half of the circle $|z-2|=3$.
(c) Determine A^{-1}, A^{-2} and A^{-3}. If $A=\left[\begin{array}{rrr}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3\end{array}\right]$
(d) Prove that $\nabla \times\left[\frac{\bar{a} \times \bar{r}}{r^{n}}\right]=\frac{(2-n)}{r^{n}} \bar{a}+n r^{-(n+2)}(a \cdot \bar{r}) \bar{r}$ where \bar{a} is constant vector.
2. (a) What is the directional derivative of $f=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the normal to the surface $x \log z-y^{2}=-4$ at $(-1,2,1)$.
(b) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{rrr}
7 & -2 & 1 \\
-2 & 10 & -2 \\
1 & -2 & 7
\end{array}\right]
$$

(c) Expand $f(z)=\frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region
(1) $|z|<1$
(2) $1<|z|<4$
(3) $|z|>4$.
3. (a) If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, show that $A^{n}=A^{n-2}+A^{2}-1$ for every integer $n \geq 3$ and hence find A^{50}
(b) Evaluate $\int_{C} \frac{\sin z}{z^{2}-i z+2} d z$ where C is
(i) $|z+i|=1$
(ii) the rectangle with vertices at $(1,0),(1,3),(-1,3)$ and $(-1,0)$.
(c) Verify Greens theorem in plane for

$$
\oint_{C}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y
$$

where C is the boundry of the region defined by $y^{2}=8 x$ and $x=2$.
4. (a) Find b such that the force field

$$
F=\left(e^{x} z-b x y\right) i+\left(1-b x^{2}\right) j+\left(e^{x}+b z\right) k \text { is conservative. Find the scalar }
$$ potential ϕ of F, when F is conservative.

(b) Test whether the matrix $A=\left[\begin{array}{rrr}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$ is derogatory.
(c) Evaluate

$$
\text { (1) } \int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}
$$

$$
\text { (2) } \int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2} \theta}
$$

5. (a) If $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$ then find (1) 4^{A} (2) e^{A}.
(b) Find the sum of the residues of the function
$f(z)=\frac{\sin z}{z \cos z}$ at its poles inside the circle $|z|=2$.
(c) Verify Divergence theorem for $F=4 x_{i}-2 y^{2} j+z^{2} k$ taken over the region bounded by the cylinder

$$
x^{2}+y^{2}=4, \quad z=0, \quad z=3
$$

6. (a) Test whether the matrix $A=\left[\begin{array}{rrr}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$ is diagonalisable. If yes, find the transforming matrix p and the diagonal matrix D .
(b) Define; Singular point, Essential singularity and Removable singularity with one example.
(c) Verify Stoke theorem for $F=\left(x^{2}+y^{2}\right) i-2 x y j$ taken round the rectangle bounded by the lines

$$
x= \pm a, y=0, y=b
$$

7. (a) Evaluate $\iint_{S} F$.nds where $F=\left(x+y^{2}\right) i-2 x j+2 y z k$ and S is the surface of the plane $2 x+y+2 z=6$ in the first octant.
(b) (i) Expand the function $f(z)=\frac{\sin z}{z-\pi}$ and $z=\pi$.
(ii) Expand $\cos z$ in a Taylors series about $z=\frac{\pi}{4}$.
(c) Reduce the given quadratic form to a canonical form by orthogonal transformation and hence find rank index and signature.

$$
Q=3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 x z-2 x y
$$

