S.E. (Etox& ExTC) sem 4(Rev.) Applied Maths IV Con. 5250-07.

2.

(REVISED COURSE)

(3 Hours) $F = (e^{x}z - base) [z + (1 - bx^{2})] + (e^{x} + bz) is is conservative:$

- N.B.(1) Question No. 1 which is compulsory.
- potential (of F, when F is conservative. (2) Answer any four questions from the remaining six questions.
 - (3) If in doubt make suitable assumption, justify your assumptions and proceed.
 - (4) Figures to the right indicate full marks.
- (a) State and prove Cauchys-Integral theorem. 1.
 - (b) Evaluate $\int_{C} (z z^2) dz$ where C is the upper half of the circle |z 2| = 3.
 - (c) Determine $\stackrel{-1}{A}$, $\stackrel{-2}{A}$ and $\stackrel{-3}{A}$. If $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ (S)
 - (d) Prove that $\nabla \times \left[\frac{\overline{a} \times \overline{r}}{r^n} \right] = \frac{(2-n)}{r^n} \overline{a} + n r^{-(n+2)} (\overline{a} \cdot \overline{r}) \overline{r}$ where \overline{a} is constant vector. 5
 - (a) What is the directional derivative of $f = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of 6 the normal to the surface x log $z - y^2 = -4$ at (-1, 2, 1). (b) Find the eigenvalues and eigenvectors of the matrix and as log en the 6

$$A = \begin{bmatrix} -2 & 10 & -2 \\ -2 & 10 & -2 \\ 1 & -2 & 7 \end{bmatrix}$$

(c) Expand $f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region (1) |z| < 1 (2) 1 < |z| < 4

Define; Singular point, Essential singularity and Removable singular[0 v0h pr]) example. (a) If A = $\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix}$, show that Aⁿ = Aⁿ⁻² + A² - I for every integer n \ge 3 and hence find A⁵⁰ 3. 6

(b) Evaluate $\int_{C} \frac{\sin z}{z^2 - iz + 2} dz$ where C is 6 (i) |z + i| = 1(ii) the rectangle with vertices at (1, 0), (1, 3), (-1, 3) and (-1, 0). (c) Verify Greens theorem in plane for 8

$$\oint_{C} (x^2 - 2xy) dx + (x^2y + 3) dy$$

where C is the boundry of the region defined by $y^2 = 8x$ and x = 2.

REVO NRUT) the given quadratic form to a canonical form by orthogonal transformation and

CD-5793

5

5

5

8

[Total Marks : 100

Con. 5250-CD-5793-07.

((

5.

(a) Find b such that the force field 4. $F = (e^{x}z - bxy)i + (1 - bx^{2})j + (e^{x} + bz)k$ is conservative. Find the scalar potential of F, when F is conservative.

Applied Mathe

6

6

6

(SEALS COURSE)

(b) Test whether the matrix A =
$$\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$
 is derogatory.

c) Evaluate
(1)
$$\int_{0}^{\pi} \frac{dx}{(a^{2} + x^{2})}$$

(2) $\int_{-\pi}^{\pi} \frac{d\theta}{1 + \sin^{2}\theta}$

(a) If
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
 then find (1) 4^{A} (2) e^{A} .

(2)

(b) Find the sum of the residues of the function

$$f(z) = \frac{\sin z}{z \cos z}$$
 at its poles inside the circle | z | = 2.

(c) Verify Divergence theorem for $F = 4x_i - 2y^2j + z^2k$ taken over the region bounded by the 8 cylinder

 $x^2 + y^2 = 4$, z = 0, z = 3.

(a) Test whether the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ is diagonalisable. If yes, find the transforming 6 6.

matrix p and the diagonal matrix D.

- (b) Define; Singular point, Essential singularity and Removable singularity with one example. 6 8 (c) Verify Stoke theorem for $F = (x^2 + y^2) i - 2xyj$ taken round the rectangle bounded by the
- lines

$$x = \pm a, y = 0, y = b.$$

(a) Evaluate $\iint F \cdot nds$ where $F = (x + y^2) i - 2xj + 2yzk$ and S is the surface of the plane 6 7. 2x + y + 2z = 6 in the first octant. (0.1) is about of the element (ii)

- (b) (i) Expand the function $f(z) = \frac{\sin z}{z \pi}$ and $z = \pi$.
 - (ii) Expand cos z in a Taylors series about $z = \frac{\pi}{4}$.
- (c) Reduce the given quadratic form to a canonical form by orthogonal transformation and 8 hence find rank index and signature.

 $Q = 3x^2 + 5y^2 + 3z^2 - 2yz + 2xz - 2xy.$