Con. 5943-09. (REVISED COURSE) SP-7859
S-E-CEATCO Second (R) [Total Marks : 100
Applied Mathematics [T]
N.B. (1) Question No.1 is computery.
(2) Attempt any four questions out of the remaining six questions. 2-30 +05-30
(3) Figures to the right indicate full marks.
1 (a) Prove that the eigen values of an orthogonal matrix are +1 or -1.
(b) Show that a harmonic function 'u' satisfies the differential equation
$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = 0$$
.
(c) $\overline{F} = (x + 2y + az) \overline{i} + (bx - 3y - z) \overline{j} + (4x + cy + 2z) \overline{k}$ if \overline{F} is intotational then find
(j) the constants a, b, c (ii) a scalar function ϕ such that $\overline{F} = \nabla Q$.
(d) Prove that J, (x) is an even function if n is an even number and is an odd function
if n is an odd number.
2. (a) If $f(z) = z^n$ then show that $f(z)$ is an analytic function and hence find $f'(z)$.
(b) Show that the matrix $A = \begin{bmatrix} 2 - 1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ satisfies Cayley-Hamilton Theorem and hence
7 find A⁻¹ if exists.
(c) Expand $f(x) = 1$ in $0 < x < 1$ in a series as $1 = \sum_{i=1}^{\infty} \frac{2}{\lambda_i} \frac{1}{\lambda_i} (\lambda_i) \frac{1}{\lambda_i} (\lambda_i x)$
(b) Find eigen values and eigen vectors of A³ where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$, is A derogatory?
7 z = 1³ from (0, 0, 0) to (1, 1, 1).
4. (a) Expand $f(z) = \frac{1}{z(z+1)(z-2)}$ in Laurent's series when —
(b) Evaluate $\int_{0}^{\overline{x}} \frac{d\theta}{3+2\cos\theta}$ 7
(c) Evaluat

175. 200 1.40.07-1717-(71)

5.

6

6

Con. 5943-SP-7859-09.

- (c) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$
 - (a) Evaluate $\int_{C} \frac{z^2}{z^4 1} dz$ where C is the circle to couls very end of the even

(REVISE(SCOURSE)

- (i) $|z| = \frac{3}{4}$ (ii) |z-1| = 1 (iii) $|z+i| = \frac{1}{2}$
- (b) Evaluate $\int_{0}^{\text{Hi}} (x^2 + iy) dz$ along the path (i) y = x (ii) $y = x^2$. Is the line integral 7

independent of the path.

(c) Verify Stoke's Theorem for $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$ over the surface $x^2 + y^2 = 1 - z$, (z > 0) 7

6. (a) Prove that
$$J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left[\frac{\cos(x)}{x} + \sin(x) \right]$$

- (b) Find the bilinear transformation which maps the points 2, i, -2 on to the points 1, i, -1. 7 Is this transformation parabolic ?
- (c) Reduce the following quadratic form $Q = 2x^2 + y^2 3z^2 8yz 4xz$ to normal form 7 through congruent transformations. Also find it's rank and signature.

7. (a) Find 4^A if A =
$$\begin{bmatrix} 3/2 & 1/2 \\ 1/2 & 3/2 \\ 1/2 & 3/2 \end{bmatrix}$$
 at here least each which is the second motion of the second motion of

(b) Find the residues at singular points of $f(z) = \frac{z}{(z-1)^2(z^2-1)}$ and hence evaluate 7

 $\int_{C} f(z)dz \text{ where } C \text{ is } |z| = 2.$

(c) Using Green's Theorem evaluate $\int_{C} \left(e^{x^2} - xy \right) dx - (y^2 - x) dy$ where C is the 7 circle $x^2 + y^2 = 1$.