(3 Hours)

5

5

6

8

6

8

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from question Nos. 2 to 7.
- (3) If in doubt make suitable assumption. Justify your assumption and proceed.
- (4) Figures to the right indicate full marks.

(a) If the angle between the surfaces $x^2 + axz + byz = 2$ and $x^2z + xy + y + 1 = z$ at 5

- (0, 1, 2) is $\cos^{-1} \frac{1}{\sqrt{3}}$ then find the constants a and b.
- (b) Find the eigen values and eigen vectors of the orthogonal matrix :-

$$B = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

- (c) Evaluate $\int_{c} f(z) dz$ along the parabola $y = 2x^{2}$ from z = 0 to z = 3 + 18i where 5 $f(z) = x^{2} - 2ixy$.
- (d) Find unit normal vector to the unit sphere at point -

$$\left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)$$

- 2. (a) Find the directional derivative of $xy^2 + yz^3$ at the point (2, -1, 1) along the tangent to 6 the curve x = a sin t, y = a cos t, z = at at t = $\frac{\pi}{4}$.
 - (b) Verify Cauchy's integral theorem for $f(z) = e^z$ along a circle c : |z| = 1.
 - (c) Reduce the Quadratic form $8x^2 + 7y^2 + 3z^2 + 12xy + 4xz - 8yz$ to sum of squares and find the corresponding Linear transformation also find the rank, index and signature.
- 3. (a) Using Caley-Hamilton theorem for -

	[-3	-4	-4]	
A =	2	2	1	
	0	1	2	
A 61	0 4 37		-	

Find $A^{64} + 2A^{37} - 58I$.

- (b) Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r}f'(r)$ and hence show that $\nabla^4 e^r = \left(1 + \frac{4}{r}\right)e^r$. 6
- (c) Find all possible Laurent's expansion of the function :-

$$f(z) = \frac{7z-2}{z(z-2)(z+1)}$$
 about $z = -1$.

4. (a) If $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ 1/2 & 2 \end{bmatrix}$ then prove that both A and B are not diagonalizable 6 but AB is not diagonalizable.

(b) Verify Green's theorem in plane for :-

 $\oint_{c} (x^{2} - 2xy) dx + (x^{2}y + 3) dy \text{ where c is the boundary of the region defined}$ by $y^{2} = 8x \text{ and } x = 2.$

6

(3 Hours)

5

5

6 8

6

8

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from question Nos. 2 to 7.
- (3) If in doubt make suitable assumption. Justify your assumption and proceed.
- (4) Figures to the right indicate full marks.

(a) If the angle between the surfaces $x^2 + axz + byz = 2$ and $x^2z + xy + y + 1 = z$ at 5

- (0, 1, 2) is $\cos^{-1} \frac{1}{\sqrt{3}}$ then find the constants a and b.
- (b) Find the eigen values and eigen vectors of the orthogonal matrix :-

$$B = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

- (c) Evaluate $\int_{c} f(z) dz$ along the parabola $y = 2x^{2}$ from z = 0 to z = 3 + 18i where 5 $\int_{c} f(z) = x^{2} - 2ixy$.
- (d) Find unit normal vector to the unit sphere at point -

$$\left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)$$

- 2. (a) Find the directional derivative of $xy^2 + yz^3$ at the point (2, -1, 1) along the tangent to 6 the curve x = a sin t, y = a cos t, z = at at t = $\frac{\pi}{4}$.
 - (b) Verify Cauchy's integral theorem for $f(z) = e^z$ along a circle c : |z| = 1.
 - (c) Reduce the Quadratic form $8x^2 + 7y^2 + 3z^2 + 12xy + 4xz - 8yz$ to sum of squares and find the corresponding Linear transformation also find the rank, index and signature.
- 3. (a) Using Caley-Hamilton theorem for -

	-3	-4	-4]	
A =				
	0	1	2	
64 0.037				

Find $A^{64} + 2A^{37} - 58I$.

- (b) Prove that $\nabla^2 f(r) = f''(r) + \frac{2}{r}f'(r)$ and hence show that $\nabla^4 e^r = \left(1 + \frac{4}{r}\right)e^r$. 6
- (c) Find all possible Laurent's expansion of the function :-

$$f(z) = \frac{7z-2}{z(z-2)(z+1)}$$
 about $z = -1$.

4. (a) If $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ 1/2 & 2 \end{bmatrix}$ then prove that both A and B are not diagonalizable 6 but AB is not diagonalizable.

(b) Verify Green's theorem in plane for :-

 $\oint_{c} (x^{2} - 2xy) dx + (x^{2}y + 3) dy \text{ where c is the boundary of the region defined}$ by $y^{2} = 8x$ and x = 2.

6

P4/RT-Ex-08-699

Con. 3436-CO-9712-08.

(i) Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx, a > 0, b > 0$$

(ii) Evaluate
$$\int_{-\infty}^{2\pi} \frac{d\theta}{\sqrt{2} - \cos\theta}.$$

5. (a) Evaluate $\int_{c} \frac{\sin^{6} z}{(z - \pi/6)^{3}} dz$ where c is |z| = 1. 6

(b) Define Minimal polynomial and derogatory matrix and Test whether the matrix

2

$$A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$
 is derogatory.

(c) Verify Gauss-Divergence theorem for :- $F = 4xi + 2y^2j + z^2k$ taken over the region of the cylinder bounded by $x^2 + y^2 = 4$, z = 0 and z = 3.

6. (a) If
$$A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$$
 then prove that 3 tan A = A tan 3.

- (b) Evaluate $\int_{c} (z z^2) dz$ where c is the upper half of circle |z 2| = 3.
- (c) (i) Show that $\overrightarrow{F} = (ye^{xy}\cos z)i + (xe^{xy}\cos z)j + (-e^{xy}\sin z)k$ is irrotational and

find the scalar potential ϕ such that $\vec{F} = \nabla \phi$.

(ii) Find div F where
$$\vec{F} = \frac{xi - yj}{x^2 + y^2}$$
.

7. (a) State and prove Cauchys-Residue theorem and hence -

Evaluate
$$\int_{c} \frac{1+z}{z(2-z)} dz$$
 where c is $|z| = 1$.

(b) Evaluate $\iint_{s} F \cdot nds$ where $F = (x + y^2) i - 2xj + 2yzk$ and s is the surface of the plane 6

2x + y + z = 6 in the first octant.

(c) Show that the matrix

$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

is diagonalizable, also find the diagonal form and diagonalizing matrix P.

8

4

4

6

8

6

6

6