N.B. : (1) Question No. 1 is compulsory.
(2) Attempt any four questions frorn question Nos. 2 to 7.
(3) If in doubt make suitable assumption. Justify your assumption and proceed.
(4) Figures to the right indicate full marks.

1. (a) If the angle between the surfaces $x^{2}+a x z+b y z=2$ and $x^{2} z+x y+y+1=z$ at $(0,1,2)$ is $\cos ^{-1} \frac{1}{\sqrt{3}}$ then find the constants a and b.
(b) Find the eigen values and eigen vectors of the orthogonal matrix :-

$$
B=\frac{1}{3}\left[\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right]
$$

(c) Evaluate $\int_{c} f(z) d z$ along the parabola $y=2 x^{2}$ from $z=0$ to $z=3+18 i$ where

$$
f(z)=x^{2}-2 i x y
$$

(d) Find unit normal vector to the unit sphere at point -

$$
\left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)
$$

2. (a) Find the directional derivative of $x y^{2}+y z^{3}$ at the point $(2,-1,1)$ along the tangent to the curve $x=a \sin t, y=a \cos t, z=$ at at $t=\frac{\pi}{4}$.
(b) Verify Cauchy's integral theorem for $f(z)=e^{z}$ along a circle $c:|z|=1$.
(c) Reduce the Quadratic form -
$8 x^{2}+7 y^{2}+3 z^{2}+12 x y+4 x z-8 y z$ to sum of squares and find the corresponding Linear transformation also find the rank, index and signature.
3. (a) Using Caley-Hamilton theorem for -

$$
A=\left[\begin{array}{rrr}
-3 & -4 & -4 \\
2 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Find $A^{64}+2 A^{37}-58 I$.
(b) Prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$ and hence show that $\nabla^{4} e^{r}=\left(1+\frac{4}{r}\right) e^{r}$.
(c) Find all possible Laurent's expansion of the function :-

$$
f(z)=\frac{7 z-2}{z(z-2)(z+1)} \text { about } z=-1
$$

4. (a) If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 0 \\ 1 / 2 & 2\end{array}\right]$ then prove that both A and B are not diagonalizable 6 but $A B$ is not diagonalizable.
(b) Verify Green's theorem in plane for :-

$$
\oint_{c}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y \text { where } c \text { is the boundary of the region defined }
$$

N.B. : (1) Question No. 1 is compulsory.
(2) Attempt any four questions from question Nos. 2 to 7.
(3) If in doubt make suitable assumption. Justify your assumption and proceed.
(4) Figures to the right indicate full marks.

1. (a) If the angle between the surfaces $x^{2}+a x z+b y z=2$ and $x^{2} z+x y+y+1=z$ at $(0,1,2)$ is $\cos ^{-1} \frac{1}{\sqrt{3}}$ then find the constants a and b.
(b) Find the eigen values and eigen vectors of the orthogonal matrix :-

$$
B=\frac{1}{3}\left[\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right]
$$

(c) Evaluate $\int f(z) d z$ along the parabola $y=2 x^{2}$ from $z=0$ to $z=3+18 i$ where
$f(z)=x^{2}-2 i x y$.
(d) Find unit normal vector to the unit sphere at point -

$$
\left(\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)
$$

2. (a) Find the directional derivative of $x y^{2}+y z^{3}$ at the point $(2,-1,1)$ along the tangent to the curve $x=a \sin t, y=a \cos t, z=$ at at $t=\frac{\pi}{4}$.
(b) Verify Cauchy's integral theorem for $f(z)=e^{z}$ along a circle $c:|z|=1$.
(c) Reduce the Quadratic form -
$8 x^{2}+7 y^{2}+3 z^{2}+12 x y+4 x z-8 y z$ to sum of squares and find the corresponding Linear transformation also find the rank, index and signature.
3. (a) Using Caley-Hamilton theorem for -

$$
A=\left[\begin{array}{rrr}
-3 & -4 & -4 \\
2 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Find $A^{64}+2 A^{37}-58 I$.
(b) Prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$ and hence show that $\nabla^{4} e^{r}=\left(1+\frac{4}{r}\right) e^{r}$.
(c) Find all possible Laurent's expansion of the function :-

$$
f(z)=\frac{7 z-2}{z(z-2)(z+1)} \text { about } z=-1
$$

4. (a) If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 0 \\ 1 / 2 & 2\end{array}\right]$ then prove that both A and B are not diagonalizable 6 but $A B$ is not diagonalizable.
(b) Verify Green's theorem in plane for :-$\oint_{c}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ where c is the boundary of the region defined by $y^{2}=8 x$ and $x=2$.
(c) (i) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x, a>0, b>0$
(ii) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{\sqrt{2}-\cos \theta}$.
5. (a) Evaluate $\int_{c} \frac{\sin ^{6} z}{(z-\pi / 6)^{3}} d z$ where c is $|z|=1$.
(b) Define Minimal polynomial and derogatory matrix and Test whether the matrix

$$
A=\left[\begin{array}{rrr}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right] \text { is derogatory. }
$$

(c) Verify Gauss-Divergence theorem for :-
$F=4 x i+2 y^{2} j+z^{2} k$ taken over the region of the cylinder bounded by $x^{2}: y^{2}=4$, $z=0$ and $z=3$.
6. (a) If $A=\left[\begin{array}{rr}-1 & 4 \\ 2 & 1\end{array}\right]$ then prove that $3 \tan A=A \tan 3$.
(b) Evaluate $\int_{c}\left(z-z^{2}\right) d z$ where c is the upper half of circle $|z-2|=3$.
(c) (i) Show that $\vec{F}=\left(y e^{x y} \cos z\right) i+\left(x e^{x y} \cos z\right) j+\left(-e^{x y} \sin z\right) k$ is irrotational and find the scalar potential ϕ such that $\vec{F}=\nabla \phi$.
(ii) Find div F where $\vec{F}=\frac{x i-y j}{x^{2}+y^{2}}$.
7. (a) State and prove Cauchys-Residue theorem and hence -

Evaluate $\int_{c} \frac{1+z}{z(2-z)} d z$ where c is $|z|=1$.
(b) Evaluate $\iint_{s} F$.nds where $F=\left(x+y^{2}\right) i-2 x j+2 y z k$ and s is the surface of the plane $2 x+y+z=6$ in the first octant.
(c) Show that the matrix

$$
A=\left[\begin{array}{rrr}
-9 & 4 & 4 \\
-8 & 3 & 4 \\
-16 & 8 & 7
\end{array}\right]
$$

is diagonalizable, also find the diagonal form and diagonalizing matrix P.

