N.B. (1) Question No. 1 is compulsory.
(2) Attempt any four questons out of remaining six questions.
(3) Assume suitable data if required.

1 (a) Sketch the single-sided and double spectra of

$$
\begin{equation*}
x(t)=10 \cos \left[2 \pi t+\frac{\pi}{4}\right]+3 \sin \left[6 \pi t+\frac{2 \pi}{3}\right] \tag{20}
\end{equation*}
$$

(b) What is Gibb's phenonmenon
(c) Determine whether the following signals are energy signals or power signals and evaluate their normalized energy and power
(i) $x(t)=\operatorname{rect}\left(\frac{t}{T_{0}}\right)$
(ii) $x(t)=\cos ^{2}\left(\omega_{0} t\right)$
(d) Determine which of the following signals are periodic.
(i) $x_{1}(t)=\sin 15 \pi t$
(ii) $x_{2}(t)=\sin 20 \pi t$
(e) Sketch the following signals
(i) $x(t)=\Pi(2 t+3)$
(ii) $x(t)=2 \Pi\left(t-\frac{1}{4}\right)$
(iii) $x(t)=\cos (20 \pi t-5 \pi)$
(iv) $x(t)=r(-0.5 t+2)$

2 (a) Show that the sequence $e^{j \frac{2 \pi k n}{N}}$ is an orthogonal eque, periodic in N .
(b) Expand the periodic gate function shown in fig exponential Fourier series and plot the frequency and power spectrum.
(c) In the above exarapla (.No. 2 (b)), what is the effect on the spectrum if period T becomes larger and larger.
3(a) Determine the output response of the low-pass RC network due to an input $x(t)=t e^{-\frac{t}{R C}}$ by convolution.

(b) Find amplitude and phase spectrum of the time shifted impulse signal $f(t)=10 \delta(t-2)$
(c) Find the Fourier Transform of the signal shown in fig.

4. (a) Obtain inverse z - transform of the following $X(z)$
if the ROC's are
(i) $|z|>3$
(ii) $|z|<\frac{1}{2}$
(iii) $\frac{1}{2}<|z|<3$
(b) Derive the relationship between Laplace Transfarm nd arier Transform.
(c) Compare Discrete Time Fourier Transform and

5 (a) A DSP system is described by the linear differemc

$$
\mathrm{y}(\mathrm{n})=0.2 \times(\mathrm{n})-0.5 \times(\mathrm{n}-2)+0.4 \times(\mathrm{n}-3)
$$

- 1) applied to the DSP system, determine the Given that the digital input sequence $\{$
(b) Prove that Linear Time Invariant system stab if impulse response is absolutely summable.
(c) A discrete time signal is given by sketch the sequence for the variable ro periods.

6. (a) Find Laplace Transform of $\left\langle e^{\lambda_{t}} u(-t)+e^{-6 t} u(t)\right.$. Does the Laplace Transform exist? Show the ROC.
(b) If $F(s)=\frac{1}{(s+2)(s}$

(i) Determine the fina vale by application of final value theorem.
(ii) Verify the resuls - finding $f(t)$
(c) List properties of Laplace Transform

7 (a) Develop the block diagram state variable model of the system described by the differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{3 d y(t)}{d t^{2}}+2 y(t)=u(t)
$$

where $y(t)$ is the output and $\quad u(t)$ is the input
(b) Find the state transition matrix $e^{\lambda t}$ for the system, modeled in state space whose matrix is given by

$$
A=\left[\begin{array}{cc}
0 & 1 \tag{8}\\
-6 & -5
\end{array}\right]
$$

(c) Define state transition matrix for a discrete and continuous time systems. Explain its significance.

