1/7/12 Code: A-20

AMIETE – ET (OLD SCHEME)

Code: AE15	S	Subject: COMMUNICATION ENGINEERING
Time: 3 Ho DEC	EMBER 2009	Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2x10)

- a. Noise figure of a receiver is 1.6. Its equivalent noise temperature will be
 - (A) 464 K

(B) 174 K

(C) 160 K

- **(D)** 0.16 K
- b. A broadcast radio transmitter radiates 10 kilowatt, when the modulation percentage is 60. The carrier power will be
 - (A) 8.47 kilowatt.

(B) 6 kilowatt.

(C) 600 kilowatt.

- **(D)** 3.65 kilowatt.
- c. The FM wave is represented by the voltage equation $u = 12 \sin \left(6 \times 10^8 t + 5 \sin 1250 t\right)$. The maximum deviation of the FM wave will be
 - (A) 60 Hz

(B) 1250 Hz

(C) $6 \times 10^8 \text{Hz}$

- **(D)** 995 Hz
- d. A signal f(t) is band-limited to 4 KHz. The Nyquist rate for sampling of the signal $f(t) + 2f^3(t)$ is given by
 - (A) 28 KHz

(B) 8 KHz

(C) 24 KHz

- **(D)** 12 KHz
- e. The channel capacity of a Gaussian channel of infinite band width is given by (where S is the signal power and $\frac{\eta}{2}$ is the PSD of white noise)
 - (A) to bits /sec.

- (C) $1.44 \left(\frac{S}{\eta} \right)$ bits/sec
- (B) $2.88 \left(\frac{S}{\eta}\right) \text{bits/sec}$ (D) $\log_2 \left(1 + \frac{S}{\eta}\right) \text{bits/sec}$
- f. For a (n, k) Block code, the generator matrix dimension is given by
 - (A) $k \times n$

(B) $n \times k$

(C) $k \times k$

- **(D)** $n \times n$
- g. For a continuous wave RADAR with transmit frequency of 5 GHz, the Doppler frequency seen by a stationary radar when the target radial velocity is 100 Km/hour is
 - (A) 413 Hz

(B) 463.5 Hz

(C) 927 Hz

(D) 500 Hz

1/7/12 Code: A-20

h. The pulse duration in a pulsed RADAR is 1μ sec. The range resolution in this case is no better than

(A) 150 m

(B) 3 Km

(C) 1.5 Km

(D) 300 m

i. The value of $J_0^2(x) + 2\sum_{n=1}^{\infty} J_n^2(x)$ is (where $J_n(x)$ is the Bessel function of nth order and first kind)

(A) 1

 $(\mathbf{B}) \quad \overline{2}$

(C) ∞

(D) 0

j. The Hilbert transform of a signal f(t) is given by

- (A) $\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f(\tau)}{(t-\tau)} d\tau$
- (B) $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\tau)(t-\tau) d\tau$
- (C) $\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(\tau)}{(t-\tau)} d\tau$
- $\mathbf{(D)} \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(\tau)}{(t-\tau)} d\tau$

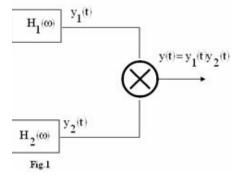
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q 2. a. Explain the working of Ring Modulator in detail.

(8)

b. For tone modulation, determine the upper limit of RC time constant in an envelope detector.

(8)


Q 3. a. An angle-modulated signal with carrier frequency $\omega_c = 2\pi \times 10^5$ rad/s is described by the equation $Y_{EM}(t) = 10 \cos(\omega_c t + 5 \sin 3000 t + 10 \sin 2000 \pi t)$

- (i) Find the frequency deviation Δf .
- (ii) Find the deviation ratio β .
- (iii) Find the phase deviation $\Delta \phi$.
- (iv) Estimate the bandwidth of $Y_{EM}(t)$.

(8)

b. Derive an expression for WBFM signal starting from first principle. Also draw its spectrum for modulation index $m_f = 2$. (8)

Q 4. a. Signals $g_1(t) = 10^4 \operatorname{rect} \left(10^4 t\right)$ and $g_2(t) = \delta(t)$ are applied as the inputs of an ideal low-pass filters $H_1(\omega) = \operatorname{rect} \left(\omega/40,000\pi\right)$ and $H_2(\omega) = \operatorname{rect} \left(\omega/20,000\pi\right)$

1/7/12 Code: A-20

The output $y_1(t)$ and $y_2(t)$ of these filters as shown in Fig.1 are multiplied to obtain the signal $y(t) = y_1(t)y_2(t)$. Find the Nyquist rate of $y_1(t)$, $y_2(t)$, and y(t). (10)

- b. Explain the difference between Natural sampling and Flat-top sampling. (6)
- Q5. a. A zero-memory source emits messages m₁ and m₂ with probabilities 0.8 and 0.2 respectively. Find the Huffman binary code for this source as well as for its second order extension. Determine the code efficiencies in each case.
 (8)
 - b. For a (6, 3) code the generator matrix \underline{G} is

$$\underline{\mathbf{G}} = \begin{bmatrix} 100 & 101 \\ 010 & 011 \\ 001 & 110 \end{bmatrix}$$

The receiver receives $\underline{r} = 100011$. Determine the corresponding data word if the channel is Binary symmetric channel and the maximum-likelihood decision is used. (8)

- Q6. a. Derive the radar range equation and discuss the factors influencing maximum range. (8)
 - b. Draw block diagram of a monochrome television receiver and explain its working. (8)
- Q7. a. Explain shot noise, thermal noise and white noise. (6)
 - b. Determine and plot the pdf of envelope of narrow band noise. (6)
 - c. A receiver connected to an antenna whose resistance is 50Ω has an equivalent noise resistance of 30Ω . Calculate the receiver's noise figure in dB and its equivalent noise temperature. (4)
- Q8. a. Explain the companding in a PCM system. Also derive an expression for signal to quantization noise ratio in a PCM system. (8)
 - b. Write a short note on FM stereophonic broadcasting. (8)
- **Q9.** Write a short notes on:
 - (i) Relationship between Bandwidth and SNR for a communication system. (8)
 - (ii) Need of modulation in a Radio transmission. (4)
 - (iii) Slope overload distortion in DM system. (4)