Code: A-15

Subject: COMMUNICATION ENGINEERING

December 2005

Time: 3 Hours

Max. Marks: 100

**NOTE:** There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

## Q.1 Choose the correct or best alternative in the following:

(2x10)

- a. Error signals associated with the sampling process are called
  - **(A)** Fold over distortion.
- **(B)** Aliasing

(C) Nyquist rate

- (D) A and B
- b. When the message and the BCC are transmitted as separate parts within the same transmitted code, it is called
  - (A) Systematic code

(B) CRC

(C) (n,k) cyclic code

- (D) Interleaved code
- c. E1 channel corresponds to
  - (A) 24 8-bit PCM voice channels
  - **(B)** 32 8-bit PCM voice channels
  - (C) 24 16-bit PCM voice channels
  - (D) 32 16-bit PCM voice channels
- d. Aperture effect is associated with
  - (A) Instantaneous sampling
- **(B)** Natural sampling
- (C) Flat-topped sampling.
- (D) Ideal sampling
- e. For an FM system, the effect of decrease in output noise power as the carrier power increases is known as
  - (A) Noise quieting

**(B)** Threshold

(C) Capture effect

(D) Aperture effect

|     | f. For tone modulation in AM, the modulation index is 0.3 and the message signal If modulation index is increased from 0.3 to 0.7, the improvement in the output S |                                                                                                   |                                                                                                                                                                                                          |                           |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
|     |                                                                                                                                                                    | (A) 3.3<br>(C) 9.9                                                                                | (B) 6.6<br>(D) 12.5                                                                                                                                                                                      |                           |  |  |
|     | g.                                                                                                                                                                 | A channel described by a channel as a                                                             | el matrix with only one non-zero element in each co                                                                                                                                                      | lumn is known             |  |  |
|     |                                                                                                                                                                    | <ul><li>(A) Deterministic channel</li><li>(C) Noiseless channel</li></ul>                         | <ul><li>(B) Loss less channel</li><li>(D) Noisy channel</li></ul>                                                                                                                                        |                           |  |  |
|     | h. A linear code $C$ of minimum distance $d_{\text{min}}$ can correct up to $t$ errors if                                                                          |                                                                                                   |                                                                                                                                                                                                          |                           |  |  |
|     |                                                                                                                                                                    | <b>(A)</b> $d_{min} < t + 1$                                                                      | <b>(B)</b> $d_{\min} \leq t+1$                                                                                                                                                                           |                           |  |  |
|     |                                                                                                                                                                    | (C) $d_{min} \ge t+1$                                                                             | <b>(D)</b> $d_{min} = t + 1$                                                                                                                                                                             |                           |  |  |
|     | i. Monitoring of the number of telephone calls arriving at a switching center during various in time will most likely correspond to                                |                                                                                                   |                                                                                                                                                                                                          |                           |  |  |
|     |                                                                                                                                                                    | (A) Guassian distribution.                                                                        | (B) Binomial distribution                                                                                                                                                                                |                           |  |  |
|     |                                                                                                                                                                    | (C) Rayleigh distribution                                                                         | (D) Poisson distribution                                                                                                                                                                                 |                           |  |  |
|     |                                                                                                                                                                    | <ul><li>j. A communication channel of t</li><li>0.1 Mbps using raised cosine pulse</li></ul>      | pandwidth 75 kHz is required to transmit binary dates. The roll of factor $\alpha$ is given by                                                                                                           | ata at a rate of          |  |  |
|     |                                                                                                                                                                    | <b>(A)</b> 1.5                                                                                    | <b>(B)</b> 2.5                                                                                                                                                                                           |                           |  |  |
|     |                                                                                                                                                                    | (C) 5.5                                                                                           | <b>(D)</b> 0.5                                                                                                                                                                                           |                           |  |  |
|     |                                                                                                                                                                    | •                                                                                                 | Questions out of EIGHT Questions.                                                                                                                                                                        |                           |  |  |
| Q.2 | a. Prove that the Dirac Delta function $\delta(t)$ is a limiting form of the Gaussian pulse.                                                                       |                                                                                                   |                                                                                                                                                                                                          | (5)                       |  |  |
|     |                                                                                                                                                                    | b. Explain how the carrier frequency can be acquired in an AM-DSBSC system using Costas loop. (5) |                                                                                                                                                                                                          |                           |  |  |
|     | c.                                                                                                                                                                 | power of 0.5 W. The signal is to amplitude of the carrier to be a                                 | Ily modulated SSB signal $\cos [(\omega_c + \omega_m)t]$ has a be detected by carrier reinsertion technique. Deteinserted so that the power in the recovered start the normalised power. The DC componer | etermine the ignal at the |  |  |

| Q.3 | <ul><li>a. Explain mathematically, how an FM signal can be demodulated using a PLL.</li><li>(7)</li></ul>                                                                                                                                             |                    |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
|     | <ul> <li>b. An FM signal has a frequency deviation of 5 kHz and a modulating frequenc SNR at the input to the receiving detector is detector output.</li> <li>(5)</li> </ul>                                                                          | •                  |  |  |  |
|     | c. Explain the threshold and the capture effects with reference to FM.                                                                                                                                                                                | (4)                |  |  |  |
| Q.4 | a. Show that there is an improvement in SNR with companding in a PCM system.                                                                                                                                                                          | (8)                |  |  |  |
|     | <ul> <li>b. A signal at the input to a μ-law compressor is positive with its voltage one h value. What proportion of the maximum output voltage is produced? Find the maximum for a linear PCM system using 16-bit quantizer.</li> <li>(4)</li> </ul> |                    |  |  |  |
|     | c. Distinguish between a DS-1 signal and a T1 carrier.                                                                                                                                                                                                | (4)                |  |  |  |
| Q.5 | a. Derive an expression for SNR in a Delta modulated signal.                                                                                                                                                                                          | (6)                |  |  |  |
|     | b. Show that for a fixed bandwidth, the performance of a Delta modulator is in PCM. (4)                                                                                                                                                               | nferior to that of |  |  |  |
|     | c. A signal is to be transmitted using DM and is of the form $s(t)=10 \cos 1000\pi t + 5 \cos 1500\pi t$ . Choose an appropriate sampling rate, step size and also find the SNR. (6)                                                                  |                    |  |  |  |
| Q.6 | <ul> <li>a. What do you understand by the term ISI in digital communication systems? Exp of reducing ISI.</li> </ul>                                                                                                                                  | lain the methods   |  |  |  |
|     | b. Explain bit and frame synchronization as applied to digital communication systems                                                                                                                                                                  | s. <b>(6)</b>      |  |  |  |
| Q.7 | <ul><li>a. Derive the radar range equation and discuss the parameters that affect the range?</li><li>(8)</li></ul>                                                                                                                                    | maximum radar      |  |  |  |
|     | <ul><li>b. Explain a color TV receiver using a block diagram clearly mentioning the furblock.</li><li>(8)</li></ul>                                                                                                                                   | nctions of every   |  |  |  |
| Q.8 | <ul> <li>a. State and prove Shannon's channel capacity theorem. Derive the Shannon (10)</li> </ul>                                                                                                                                                    | 's limit (bound).  |  |  |  |

b. An FSK system transmits binary data at the rate of 2.5 Mbps. During the course of transmission,

while Guassian noise of zero mean and power spectral density  $10^{-20}$  W/Hz is added to the signal. In the absence of noise, the amplitude of the received sinusoidal wave for digit 1 or 0 is 1  $\mu$ V. Determine the average probability of symbol error assuming coherent detection.

- **Q.9** Write explanatory notes on:
  - (i) FM stereophonic broadcasting.
  - (ii) ADM
  - (iii) Optimum Receiver
  - (iv) Block codes

(4x4=16)