N.B. (1) Question No. 1 is compulsory and answer any four questions out to remaining.
(2) Assume suitable data, if necessary with proper justifications.

1. Attempt any four of the following :-
(a) Express $x(t)$ as shown in figure using unit step signal.

(b) Find whether signal is Energy signal or Power signal. Find corresponding Energy/Power if.

$$
x(t)=2 u(t-2)-6 u(t-3)+4 u(t-6)
$$

(c) Classify system as Linear/Nonlinear, Causal/Noncausal, Time varying/Time Invariant, memory/memoryless if

$$
y(t)=x(2 t)-x(-t+1)
$$

(d) Signal $x(t)$ is shown in figure below. Sketch and Label following signal-
(i) $x(2 t-2)$
(ii) $x(t+3)$

(e) Plot $x(t)$ if

$$
x(t)=[u(t)+r(t-1)-2 u(t-3)] u(-t+5)
$$

2. (a) The T.F. of the system is given as -

$$
H(s)=\frac{s^{2}+s+5}{s^{3}+6 s^{2}+8 s+4}
$$

Obtainstate variable model using phase variables.
(b) Obtain state transition matrix e^{At} for the following model if-

$$
A=\left[\begin{array}{ll}
0 & -3 \\
1 & -4
\end{array}\right]
$$

3. (a) Prove that-
F.T. $[x(t) * h(t)]=X(w) \cdot H(w)$
where F.T. $[x(t)]=X(w)$
and F.T. $[\mathrm{h}(\mathrm{t})]=\mathrm{H}(\mathrm{w})$
(b) Find Fourier Transform (F.T.), if
$x(t)=A$ for $-\infty \leq t \leq \infty$
Hence and not otherwise find - F.T of :-
(i) $\mathrm{x}_{1}(\mathrm{t})=\cos \mathrm{w}_{0} \mathrm{t}$
(ii) $x_{2}(t)=\cos ^{2} w_{0} t$ specify property used.

Con. 3402-CO-9970-08.
4. (a) Find Fourier Transform of periodic impulse train as shown in figure below-

(b) Find Fourier Transform of $\mathrm{x}(\mathrm{t})$ as shown in figure below by using Fourier Transform of gate function, and property of Fourier Transform. Specify property used.

(c) Find the response of the system having equation.

$$
\ddot{y}(t)+\dot{y}(t)-2 y(t)=\dot{u}(t)+2 u(t)
$$

with initial conditions.

$$
y\left(0^{-}\right)=1 \text { and } y^{\prime}\left(0^{-}\right)=-1 .
$$

5. (a) Find Laplace Transform of following signals. Draw ROC in each case-
(i) $x_{1}(t)=\cos (3 t+\pi / 4) u(t)$
(ii) $x_{2}(t)=t^{2} u(t-1)$
(iii) $x_{3}(t)=\int_{0}^{t} 7 u(t) d t$
(iv) $x_{4}(t)=5 e^{-3 t} \cdot \sin (7 t) u(t)$

Use property of L.T. and specify property used.
(b) A system has an output-

$$
y(t)=2\left(1-e^{-0.5 t}\right) \text { for } t \geq 0
$$

when an $I / p x(t)=2 u(t)$ is applied to it. What will be the o / p if applied I / p is $x(t)=\left(e^{-t}+e^{-3 t}\right) u(t)$.
6. (a) An LTI system gives at its $0 / p$ a triangular waveform as shown in figure below-

when excited at its $I / p x(t)$ which is pulse shown in figure below

determine its transfer function $\mathrm{H}(\mathrm{s})$.
(b) Find Inverse Laplace Transform for all possible ROC if-
$X(s)=\frac{s^{3}+2 s-4}{s^{2}+s-2}$.
7. (a) Find Exponential Fourier series expansion for the signal shown below :

(b) Express given rectangular function in terms of the orthogonal set of function $\sin n t$, orthogonal over $(0, \pi 2)$ and also find minimum MSE by considering one, two, and three terms.

