

B. Tech Degree VII Semester Examination November 2006

IT 701 NEURO COMPUTING

		IT 701 NEURO COMPUTING (Prior to 2002 Admissions)	
APIME 1	Hours	Maximum Mark	ks: 100
I.	(a)	Explain the structure of a biological neuron. Also explain the structure of artificial	(10)
	(b)	neuron. Explain supervised learning and unsupervised learning. OR	(10) (10)
II.	(a)	Explain how fault tolerance, parallel and distributed processing can be achieved in neural networks.	(10)
	(b)	Discuss how a perceptron can classify the inputs by linear separability with suitable example.	(10)
III.	(a)	Evaloin looming algorithms	
111,	(a)	Explain learning algorithms. (i) Hebbian learning (ii) Widrow – Hoff learning	(10)
	(b)	Why do you add a neuron bias and momentum in the multilayer perceptron? OR	(10)
IV.	(a)	Explain back propagation algorithm for multilayer perceptron.	(10)
	(b)	Draw a multi layer perceptron for solving X-OR problem.	(10)
V.		Explain the architecture of ART with suitable diagram for comparison, recognition,	(20)
		lateral inhibition-recognition processes. OR	(20)
VI.	(a)	Explain ART classification process.	(10)
	(b)	Explain the characteristics of ART.	(10)
VII.	(a)	Explain the configuration of a single layer recurrent network.	(10)
	(b)	Discuss the stability of the recurrent network. OR	(10)
VIII.	(a)	Explain the TSP solution using Hopfield networks.	(10)
	(b)	Explain BAM architecture.	(10)
IX.	(a)	Explain the training in Kohenen's network.	(10)
	(b)	Why and how preprocessing of input vectors are done in Kohonen's network? OR	(10)
X.		Explain the cognitron and neo cognitron model.	(20)