12/31/11 Code: A-20

Diplete - ET (OLD SCHEME)

Code: DE15		Subject: CONTROL ENGINEERING
Time: 3 Hours		Max. Marks: 100
	JUNE 2010	

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

Q.1	Choose the correct or the best alternative in the following:			(2×10)
	a.	The system with the character	istic equation $(s+1)(s+2)(s-3) = 0$ is _	
		(A) stable	(B) marginally stable	
		(C) not necessarily stable	(D) unstable	
	b.	Signal flow graph is used to o	btain	
		(A) stability of the system		
		(B) transfer function of the sy		
		(C) dynamic response of the	system	
		(D) poles of the system	25	
	c.	The second order system is d within \pm 2% of input is	efined by $s^2 + 5s + 25$ is given a step inposer.	ut. The time taken for the response to set
		(A) 1.2 ses	(B) 1.6 sec	
		(C) 2 sec	(D) 0.4 sec	
		G(s)	= <u>K</u>	
	d.	For the transfer function	$= \frac{K}{(s+1)(s+2)(s+3)}$, the breakaway po	int will lie between
		(A) 0 and -1	(B) −1 and −2	
		(C) -2 and -3	(D) beyond -3	
	e.	If the open loop transfer funct frequency, the phase margin of th	ion G (jw) of a unity feedback system has e system is equal to	a phase angle of -150^{o} at the gain cross-or
		(A) -150°	(B) 210°	
		(C) 30°	$(D) = 30^{\circ}$	

12/31/11 Code: A-20

_		
£	The steedy state amon of a stable type (0) yes	nity feedback system for a unit step function is given as .
I.	The sleady state error of a stable type of the	ntv teedback system for a unit step function is given as

- (A) 0 (B) $\frac{1}{1+K_{P}}$ (C) ∞ (D) $\frac{1}{K_{P}}$
- g. From the Nichols chart, one can determine the following quantities pertaining to closed loop system as:
 - (A) Magnitude and phase(B) Bandwidth(C) Magnitude only(D) Both (A) & (B)
- h. The transfer function of a simple RC network functioning as compensator is $G_{\sigma}(s) = \frac{s+z_1}{s+p_1}$. The condition for RC network to act as phase lead controller is _____.
 - (A) $p_1 < z_1$ (B) $p_1 = z_1$ (C) $p_1 = 0$ (D) $p_1 > z_1$
- i. Gain cross-over frequency is defined as the frequency at which . .
 - (A) $|G(j\omega)H(j\omega)| = 1$ (B) $|G(j\omega)H(j\omega)| = 0$ (C) $|G(j\omega)H(j\omega)| = \infty$ (D) $|G(j\omega)H(j\omega)| = \frac{1}{2}$
- j. If stability error for step input and speed of response be the criteria for design, what type of controller would you recommend?
 - (A) P Controller.(B) PD Controller.(C) PI Controller.(D) PID controller.

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q. 2 a. Define state space model and transfer function model. Give advantages and limitations of state space model over transfer function model. (8)
 - b. A unit step signal is applied on the second order system given by $\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$. Find the dynamic response for $0 < \zeta < 1$

Q. 3 a. Reduce the block diagram shown in the Fig.1 below and obtain the transfer function. (8)

Fig.1

.

- b. Explain with neat sketches the construction and working of synchros. (8)
- Q. 4 a. Discuss the basic feedback characteristics of feedback control system. (8)
 - b. Define stability, absolute stability, relative stability and conditional stability.

(8)

Q. 5 a. Find the steady state error for unit step, unit velocity and unit acceleration inputs for the system with $G(s) = \frac{100}{s^2(0.1s+1)(0.01s+1)}$ (8)

- b. Sketch the root locus of a unity feedback system with $G(s) = \frac{K(s+3)}{s(s+2)}$ (8)
- Q. 6 a. Draw the bode plot for the following transfer function and determine the stability margins: (8)

$$GH(s) = \frac{100}{s(0.01s+1)}$$

b. What is M-circle? Explain in detail.

(8)

Q.7 a. Using Nyquist Criterion, comment on the stability of the system whose open loop transfer function is $GH(s) = \frac{1}{(0.5s+1)(0.2s+1)}.$ (8)

- b. With the help of block diagrams explain briefly:
 - (i) Derivative error and
 - (ii) Integral error compensation.

(8)

- Q. 8 a. Write short note on:
 - (i) Use of digital computer as compensator.
 - (ii) Op-amp.

(8)

12/31/11 Code: A-20

b. State the necessary condition for the Routh's criterion for stability. Determine the stability of the system whose characteristic equation is given by $\varepsilon^4 + 6\varepsilon^3 + 23\varepsilon^2 + 40\varepsilon + 50 = 0$. (8)

(8)

Q. 9 a. What is Mason Gain Rule? Obtain $\frac{C}{R}$ for the signal flow graph shown in Fig.2.

b. Discuss the tuning of PID controllers. (8)