MCA-650 MCA-10/ PGDCA-08

M.C.A./P.G.D.C.A. DEGREE/DIPLOMA EXAMINATION – JUNE 2008.

First Year/Second Semester

THEORY OF COMPUTER SCIENCE

Time : 3 hours

Maximum marks: 75

Answer for 5 marks questions should not exceed 2 pages.

Answer for 10/15 marks questions should not exceed 5 pages.

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

1. Define equivalence relation. Give examples.

2. If f(x) = x + 2, g(x) = x - 2 for $x \in \mathbb{R}$ find $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$.

3. Construct truth table for $(P \lor Q) \lor 7P$.

4. Explain conjunctive and disjunctive normal forms.

5. What are isomorphic graphs? Explain with examples.

6. Prove that sum of degrees of all vertices of a graph is equal to twice the number of edges in the graph.

7. Explain matrix representation of graphs with examples.

PART B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

8. Let $X = \{1, 2, 3, 4\}$ and

 $R = \{(x, y) | x > y\}$ be a relation on *X*.

Determine properties of R and also write the relation matrix.

9. Prove that transitive closure R+ of a relation R in a finite set X is transitive.

10. Construct truth table for the formula $(Q \land (P \to Q)) \to P$.

11. Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \to R, P \to M$ and $\neg M$.

12. Construct a turing machine $T = \{A, Q, X, P\}$ in which $A = \{a, b, B\}$ with states $Q = \{q_i (0 \le i \le n)\}$.

2 MCA-650

13. Prove that in a simple digraph G = (V, E) every node lies in exactly one string component.

14. Show that in a complete binary tree the total number of edges is (2n-1) where 'n' is number of terminal nodes.

3