98-10. Pandom Signed Analysis GT-6753
(REVISED COURSE) Con. 6198-10.

[Total Marks: 100 (3 Hours)

20

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Solve any four from remaining questions.
 - (3) Assume suitable data wherever necessary and state it plearly
- 1. (a) State and Explain central limit theorem.

 $\mu_v = E[X]$ and $\mu_v = E[Y]$.

- (i) State Axiomatic definition of probability. (b). (ii) If X and Y are independent random variables show that $E[XY] = \mu_x \mu_v$ where
- Define strict sense stationary and WSS random precess. (c)
- Define Markov Chain. State any two application areas of Markov Chains. (d)
- Define random variable, explain with suitable example. State the conditions for 10 2. (a)
 - a function to be a random variable. Let X_1, X_2, \ldots be a sequence of random variables. 10 (b)
 - Define: (i) convergence almost verywhere (ii) convergence in Probability
 - (iii) convergence in nea square sense
 - (iv) convergence in Distribution
 - for the above sequence to a raidom variable X.
- Define random process. Give example of a random process. Show few 10 3. (a) member functions. Define first and second order distribution and density functions for a random process.
 - The signal Z at the input of an amplifier consists of a signal X to which is 10 (b) added random toise Y. Thus Z = X + Y. If X is also a random variable.

 (i) Determine the pdf of Z.

 (ii) If X and Y are independent then what is the pdf of Z?
- In a communication system, a zero is transmitted with probability 0.4 and 10 4. (a) a one transmitted with probability 0.6. Due to noise in the channel, a zerocan be received as one with probability 0.1 and as a zero with probability 0.9, similarly one can be received as zero with probability 0.1
 - and as a one with probability 0.9. Now-(i) A one is observed, what is the Probability that zero was transmitted.
 - (ii) A one is observed, what is the Probability that a one was transmitted.
 - In Medical imaging such as computer tomography the relation between 10 (b) detector reading y and body absorptivity x follows a $y = e^x$ law. Let X be $N(\mu, \sigma^2)$. Compute the pdf of y.

Consider the random process— $X(t) = A \sin(w_0 t + \theta)$ where A and θ are independent, real-valued random variables and θ is uniformly distributed over $[-\pi, +\pi]$. Find the mean $\mu_x(t)$ and Autocorrelation function $R_{xx}(t)t_2$ of X(t).

Kolmogorov equation.

Define n-step transition probability for a Markov Chain. Defive Chapman 10

ITURN OVER

6. (a) A WSS random process x(t) with autocorrelation— $R_{vv}(\tau) = Ae^{-a t \tau t}$

where A and a are real positive constants, is applied to the input of an LTI system with impulse response $h(t) = e^{-bt} u(t)$, where b is a real positive constant. Find the autocorrelation of the output Y(t) of the system.

10

10

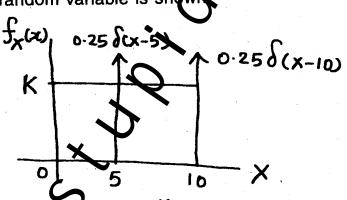
10

(b) In the photoelctric detector, Let Y be the number of photoelectrons produced in time τ, depends on the (normalized) incident energy X. If X were constant, say X = x, Y would be a poisson random variable with parameter x but as real light sources except for gain stabilized lasers – do not emit constant energy signals, X must be treated as a random variable. In certain situations the pdf of X is accurately modeled by—

$$f_{X}(x) = \begin{cases} \frac{1}{\mu_{x}} \exp\left(\frac{-x}{\mu_{x}}\right), & x \ge 0 \\ 0, & x < 0 \end{cases}$$

where $\mu_{\mathbf{X}} = \mathbf{E}[\mathbf{X}]$ Compute $\mathbf{E}[\mathbf{Y}]$.

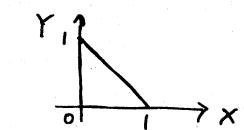
7. (a) The pdf of a random variable is shown



- (i) Find the value of constant K.
- (ii) Compute $P[X \le 5]$ and $P[5 \le X < 10]$.
- (b) The joint probability density function of (x, y) is given by-

$$f_{XY}(x,y) = C (1-x-y)$$

for values and y for which (x, y) lies within the triangle as shown—



outside the triangle $f_{XY}(x, y) = 0$.

Find:

- (i) C
- (ii) $f_X(x)$
- (iii) $f_{\gamma}(y)$.