T.E. Sem 6 (Rev.)

Probability and Random Processess

Con. 5829-08

## (REVISED COURSE)

RC-6968

(3 Hours) (a) Suppose X and Y are two random variables. Define covariance and correlation of 10

[Total Marks: 100

N.B.: Answer any five questions.

1. (a) State the three axioms of probability.

- 6
- (b) Explain the concept of Joint and conditional probability with ope example each.
  - 6
- (c) What is a Random Variable? Explain continuous and discrete with suitable examples.

2. (a) State and prove Bayes' theorem.

- (b) In a factory, four machines A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> and A<sub>4</sub> product 10%, 25%, 35%, 30% of the items respectively. The percentage of defective items produced by them is 5%, 4%, 3% and 2% respectively. An item selected at handom is found to be defective. What is the probability that it was produced by the machine A2?
- 3. (a) If X is a continuous random variable al.
- 10

$$f_{y}(y) = \frac{1}{|a|} f_{x} \left( \frac{Y - b}{a} \right)$$

- The Joint density function of two ntinuous random variables is given by
- 10

$$f(x,y) = \begin{cases} xy/8 & 0 & 2 & 1 < y < 3 \\ 0 & \text{otherwise} \end{cases}$$

20

| X = x    | 1   | 2   | 3   | 4    | 5    | 6    |
|----------|-----|-----|-----|------|------|------|
| P(X = x) | 1/8 | 3/8 | 3/8 | 1/16 | 1/32 | 1/32 |

has the following probability mass functions: If souped called

- (a) Find entropy
- Encode using Shannan Fano and Huffman coding techniques.

Probability and Random

- 5. (a) Suppose X and Y are two random variables. Define covariance and correlation of X and Y. When do we say that X and Y are
  - (i) Orthogonal
  - (ii) Independent and
  - (iii) Uncorrelated ? Are Uncorrelated variables independen ?
  - (b) What is a Random Process ? State four classes of random processes giving one example each.
- 6. (a) Explain in brief:
  - (i) WSS process
    - (ii) Poisson process
      - (iii) Queueing system.
  - (b) The Joint probability function of two random variables X and Y is given by:

$$f(x,y) = \begin{cases} C(x^2 + 2y) & x = 2, 2 \\ 0 & \text{otherwise}, & Y = 1, 2, 3, 4 \end{cases}$$

Find: (i) The value of C

- (ii) P(X = 2, Y = 3)
- (iii)  $P(X \le Y > 2)$  and
- (iv) Marginal crobability functions of X and Y.
- 7. (a) If X and Y are wo random variables with standard deviations  $\sigma_x$  and  $\sigma_y$  and if  $C_{xy}$  is the covariance between them, then prove :

(i) 
$$C_{xy}(x, y) = R_{xy}(x, y) - E(X) \cdot E(Y)$$
 (iii)

.

(ii)  $|C_{xy}| \leq \sigma_x, \sigma_y$ 

4

10

Also deduce that oftenut seem yillidedong phiwofol ont set X eldehev mobiler A

$$-1 \leq \rho \leq 1$$

10

(b) Explain power spectral density function. State its important properties and prove any one property.