SECTION - A

 $10 \times 2 = 20$

VERY SHORT ANSWER TYPE QUESTIONS

Attempt ALL questions. Each question carries 2 marks.

- 1. Find the equation of the circle having the line joining (1, 2), (4, 5) as a diameter.
- 2. Find the equation of the sphere that passes through the point (4, 3, -1) and having its centre (3, 8, 1).
- 3. Find the equation of the tangent to the parabola $y^2 = 16x$ inclined at 60° to the x-axis.
- 4. Find the product of lengths of the perpendiculars from any point on the hyperbola $x^2/16 y^2/9 = 1$ to its assymptotes.
- 5. Find the *n*th derivative of $\log (4x^2 9)$.
- **6.** Evaluate $\int \frac{1}{5 2x^2 + 4x} dx.$
- 7. Evaluate $\int \frac{1}{1 + \sin 2x} dx$.
- 8. Evaluate $\int_{0}^{\pi/2} \frac{\cos^{5/2} x}{\sin^{5/2} x + \cos^{5/2} x} dx.$
- 9. Find the area cut off between x = 0 and $x = 4 y^2$.
- 10. Find the order of the differential equation obtained by eliminating the arbitrary constants b and c from $xy = ce^x + be^{-x} + x^2$.

SECTION - B

 $5 \times 4 = 20$

SHORT ANSWER TYPE QUESTIONS

Attempt any 5 questions. Each question carries 4 marks.

11. Show that the area of the triangle formed by the two tangents from (x_1, y_1) to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ and the chord of contact is $\frac{r(S_{11})^{3/2}}{r^2 + S_{11}}$ where r is the radius of the circle.

- 12. Show that the common tangents to the circle $2x^2 + 2y^2 = a^2$ and the parabola $y^2 = 4ax$ intersect at the focus of the parabola $y^2 = -4ax$.
- 13. Show that the locus of poles of chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which subtend a right angle at the centre of the ellipse is $\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2} + \frac{1}{b^2}$.
- 14. If PSP', QSQ are two perpendicular focal chords of a conic then show that $\frac{1}{PP'} + \frac{1}{QQ'}$ is a constant.
- **15.** Evaluate $\int x \sin^{-1} x dx$.
- **16.** Solve $(y^2 2xy) dx + (2xy x^2) dy = 0$.
- 17. Solve $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$.

SECTION - C

 $5 \times 7 = 35$

LONG ANSWER TYPE QUESTIONS

Attempt any 5 questions. Each question carries 7 marks.

- **18.** Show that the circles $x^2 + y^2 4x 6y 12 = 0$, $x^2 + y^2 + 6x + 18y + 26 = 0$ touch each other. Find the point of contact and the equation of the tangent at the point of contact.
- 19. Find the equation of the circle cutting orthogonally the circles $x^2 + y^2 8x 2y + 16 = 0$, $x^2 + y^2 4x 4y 1 = 0$ and passing through the point (1, 1).
- 20. Find the equation of the parabola whose focus is (3, 5) and vertex is (1, 3).
- **21.** If $y = Tan^{-1}x$ then show that $(1+x^2)y_{n+2} + (2n+2)xy_{n+1} + n(n+1)y_n = 0$.
- 22. Evaluate $\int \frac{1}{3\cos x + 4\sin x + 6} dx$.
- 23. Evaluate $\int_{0}^{\pi/2} \frac{x \, dx}{\sin x + \cos x}.$
- 24. Using Simpson's rule to approximate the integral $\int_{1}^{5} \frac{dx}{1+x}$ with n=4.