Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M.E. Sem – I Examination January 2011 Subject code: 710901N

Subject Name: Theory of Elasticity

Date:07/07/2011 Time: 10:30 am – 01:00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	At a point in a body $\sigma_x=10000$ Mpa, $\sigma_y=-5000$ Mpa, $\sigma_z=-5000$ Mpa, $\tau_{xy}=\tau_{yz}=\tau_{zx}=10000$ Mpa. Determine the normal and shearing stresses on a plane that is equally inclined to all the three axes.	07
	(b)	Find the principal stresses and check for invariance if the values of stresses at a point are : σ_x =1 Mpa, σ_y =-2 Mpa, σ_z =4 Mpa, τ_{xy} =2Mpa, τ_{yz} = -3Mpa τ_{zx} =1Mpa.	07
Q.2	(a)	The state of stress at a point is such that $\sigma_x = \sigma_y = \sigma_z = \tau_{xy} = \tau_{yz} = \tau_{zx} = \rho$. Determine the principal stresses and their directions.	07
	(b)	Explain Mohr's circle for the three-dimensional state of stress. OR	07
	(b)	Explain stress components on an arbitrary plane.	07
Q.3	(a) (b)	What is the significance of Octahedral stresses Explain plane state of stress with its mathematical expressions OR	07 07
Q.3	(a) (b)	What is the significance of compatibility conditions. Explain plane state of strain with its mathematical expressions	07 07
Q.4	(a) (b)	Explain first law of Castigliano Explain Kirchhoff's theorem OR	07 07
Q.4	(a) (b)	Explain second theorem of Castigliano What do you understand by Reciprocal relation and explain Maxwell- Betti-Rayleigh reciprocal theorem.	07 07
Q.5	(a)	What do you understand by axisymmetric problems and how it is analyzed for stress and stain.	07
	(b)	Discuss thermo elastic stress-strain relations, equations of equilibrium and strain-displacement relations if thermal stresses are considered	07
Q.5	(a)	OR Derive the expressions for the normal stresses in a straight beams due to	07
	a >	the thermal loading	0.5
	(b)	Derive the expressions for the thick cylinder subjected to internal and external pressures	07