FURTHER MATHEMATICS
STANDARD LEVEL
PAPER 1
Monday 12 November 2001 (afternoon)
1 hour

## INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures as appropriate.
- Write the make and model of your calculator on the front cover of your answer booklets e.g. Casio fx-9750G, Sharp EL-9600, Texas Instruments TI-85.

A correct answer with no indication of the method used will usually receive no marks. You are therefore advised to show your working. In particular, where graphs from a graphic display calculator are being used to find solutions, you should sketch these graphs as part of your answer.

1. Let $S=\{1,2,3,4\}$ and let $A=S \times S$. Define the relation $R$ on $A$ by:

$$
(a, b) R(x, y) \text { if and only if } a+b=x+y
$$

Show that $R$ is an equivalence relation and find the partition it creates on $A$.
2. Determine whether the series $\sum_{k=1}^{\infty} \frac{k}{\mathrm{e}^{k}}$ converges or diverges. Note the test you use.
3. Find the order of a group $G$ generated by two elements $x$ and $y$, subject only to the following relations $x^{3}=y^{2}=(x y)^{2}=1$. List all subgroups of $G$.
4. Draw a graph given by the following adjacency matrix.

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Determine how many graphs with the same number of edges are possible on this set of vertices.
5. The following diagram shows an isosceles triangle ABC , and 2 circles. The circle whose centre is I and radius is $r$ is inscribed in $\triangle \mathrm{ABC}$. The circle whose centre is E and radius is $R$ is the escribed circle, ie it is outside $\triangle \mathrm{ABC}$, and the lines $(\mathrm{BC}),(\mathrm{AB})$ and ( AC ) are tangents to this circle.

(a) Show that angle IBE is a right angle.
(b) Find BC in terms of $r$ and $R$.
6. Find the solution to the recurrence relation

$$
a_{n}=7 a_{n-1}-6 a_{n-2}, \text { with } a_{0}=-1 \text { and } a_{1}=4
$$

7. Use a binary search tree to find 43 on the following list

$$
10,15,20,28,37,39,43,58,67,77,81,99 .
$$

Show all steps.
8. A computer repair shop replaces corrupt hard disks at a rate of 4 per week. Assuming that such repairs occur at random, find the probability that
(a) exactly 7 hard disks are replaced in one week;
(b) in a 3-week period, at least 7 disks are replaced in two of these weeks.
9. In a triangle $\mathrm{ABC}, \mathrm{AB}=8, \mathrm{AC}=10$, and the median to the side $[\mathrm{BC}]$ has length 8 . Find the area of the triangle.
10. Estimate $e^{0.2}$ correct to 3 decimal places, using the Taylor approximation

$$
f(a+x)=f(a)+x f^{\prime}(a)+\ldots+\frac{x^{n}}{n!} f^{(n)}(a)+\frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

