ENGINEERING MATHS-I (AM-101, DEC-05)

Note: Section A is compulsory. Attempt any five questions from Section B and C taking at least two questions from each part.

Section-A

- 1. (a) Define the point of inflection for a curve and find (s) of inflection for the curve $y = x^3 + 8x^3 270x$
- (b) What do you understand by parametric curves? Give an example of a parametric curve involving two parameters.
- (c) Using parametric equation of a circle, show that the area of circle of radius r is πr^2 .
- (d) Find the area of sphere generated by revolving the circle $x^2 + y^2 = r^2$ about x axis

(e) If x = r cos θ and y = r sin θ , Find $\frac{\partial(x, y)}{\partial(r, \theta)}$ and $\frac{\partial(r, \theta)}{\partial(x, y)}$

(f) Find the equation of normal line to the surface $xyz = a^3$ at P(x₁, y₂, z₁)

(g) Evaluate $\int_{0}^{1} \int_{0}^{1} (x+2)dydx$

- (h) State De Moivre's theorem and prove it for the most fundamental case.
- (i) Define tangent plane to a sphere and derive the equation of tangent plane taking a general equation of the sphere.
- (j) Define Beta function.

Section-B

2. Trace the polar curve

 $r = a(1 - cos\theta)$, where a is +ve constant.

- 3. Find the area contained between x-axis and one arch of the curve $y = \cos 3x$.
- 4. (a). Verify the Euler's theorem for

 $f(x, y, z) = 3x^2yz + 3xy^2z + 4z^4$

(b) If u = sin⁻¹ (x - y) x = 3t, y = 4t³, find the value of
$$\frac{du}{dt}$$

5. Use Languages method to find the minimum value of $x^2 + y^2 + z^2$ subject to the condition x+y+z=1 and xyz=1=0

Section-C

- 6. Show that the plane 2x-2y+z+12=0 touches the sphere $x^2+y^2+z^2-2x+4y+2z-3=0$. Also find the point of contact.
- 7. Using double integration, find the area enclosed between the curve $y^2 = x^3$ and y = x
- 8. Test the following series for uniform convergence $\sum \frac{\cos n^x}{n^3}$ for n < x < 2n.

9. If
$$u = \log\left(\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)\right)$$
, prove that (i) $\sinh(u) = \tan\theta$ (ii) $\tanh u = \sin\theta$