ENGINEERING MATHS-I
 (AM-101, DEC-05)

Note: Section A is compulsory. Attempt any five questions from Section B and C taking at least two questions from each part.

Section-A

1. (a) Define the point of inflection for a curve and find (s) of inflection for the curve $y=x^{3}+8 x^{3}-270 x$
(b) What do you understand by parametric curves? Give an example of a parametric curve involving two parameters.
(c) Using parametric equation of a circle, show that the area of circle of radius r is πr^{2}.
(d) Find the area of sphere generated by revolving the circle
$x^{2}+y^{2}=r^{2}$ about x axis
(e) If $x=r \cos \theta$ and $y=r \sin \theta$, Find $\frac{\partial(x, y)}{\partial(r, \theta)}$ and $\frac{\partial(r, \theta)}{\partial(x, y)}$
(f) Find the equation of normal line to the surface $x y z=a^{3}$ at $P\left(x_{1}, y_{2}, z_{1}\right)$
(g) Evaluate $\int_{0}^{1} \int_{0}^{1}(x+2) d y d x$
(h) State De Moivre's theorem and prove it for the most fundamental case.
(i) Define tangent plane to a sphere and derive the equation of tangent plane taking a general equation of the sphere.
(j) Define Beta function.
2. Trace the polar curve

Section-B

$r=a(1-\cos \theta)$, where a is $+v e$ constant.
3. Find the area contained between x-axis and one arch of the curve $y=\cos 3 x$.
4. (a). Verify the Euler's theorem for

$$
f(x, y, z)=3 x^{2} y z+3 x y^{2} z+4 z^{4}
$$

(b) If $u=\sin ^{-1}(x-y) x=3 t, y=4 t^{3}$, find the value of $\frac{d u}{d t}$
5. Use Languages method to find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the condition $x+y+z=1$ and $x y z=1=0$

Section-C

6. Show that the plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x+4 y+2 z-3=0$. Also find the point of contact.
7. Using double integration, find the area enclosed between the curve $y^{2}=x^{3}$ and $y=x$
8. Test the following series for uniform convergence $\sum \frac{\cos n^{x}}{n^{3}}$ for $\pi<x<2 \pi$.
9. If $u=\log \left(\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)\right)$, prove that (i) $\sinh (u)=\tan \theta \quad$ (ii) $\tanh u=\sin \theta$
