	5.E	E. Se	Comp. Digital Logic Design and Application. 17/11 (REVISED COURSE) RC-8922	alar	
	ws Oc	08 247	(REVISED COURSE) RC-8922	900	
			(3 Hours) [Total Marks : 100		
	N.E	3. :	 Question No. 1 is compulsory. Attempt any four questions out of remaining six questions. Assume suitable data and state it clearly. 		
	1.	(a)	Convert (157.63) ₈ into decimal, binary and hexadecimal system.	4	
		(b)	Simplify using boolean laws :	4	
			$\overline{AB} + \overline{A} + AB$		
		(c)	Design full adder using half adders.	4	
		(d)	State and prove De Morgan's theorem.	4	
((e)	Implement the boolean function with NAND – NAND logic $F(A, B, C) = \Sigma m(0, 1, 3, 5)$	4	
	2.	(a)	Using boolean laws, prove NAND and NOR gates as universal gates.	10	
	•	(b)	Draw 3-bit binary up-down counter and explain the operation.	10	
	3.	(a)	What is race condition ? How it is overcome in Master-slave J-K flip flop ? Explain.	10	
		(b)	State truth table of 3 bit gray to binary conversion and design using 3 : 8 decoder and additional gates.	10	
	4.	(a)	Simplify using K-map, $f(A, B, C, D) = \pi M(0, 2, 3, 6, 7, 8, 9, 12, 13)$ Write simplified SOP and POS equations and draw logical diagram using NAND gates only.	10	
	•	(b)	Simplify the function using Quine McClusky method. $f(A, B, C, D) = \Sigma m(4, 5, 8, 9, 11, 12, 13, 15)$ Draw the logical diagram using NAND gates.	10	
	5.	(a)	Draw a 2-input TTL NAND gate and explain its operation.	10	
		(b)	Simplify F(P, Q, R, S) = π M(3, 4, 5, 6, 7, 10, 11, 15) and implement using minimum no. of gates.	10	
	6.	(a)	Design MOD-6 synchronous counter and explain its operation.	10	
	0.	(a) (b)	Draw 4 bit universal shift register and explain its operation.	10	
		,			
	7.	Write short notes on :- (a) Multiplexer and demultiplexer		20	
		(b) ALU		
			c) Asynchronous vs synchronous counter		
		(d) Octal to binary encoder.		