S.E. Sem 3(Rev.)

 Con. $5677-08$. Digital $\operatorname{logic}_{\text {(REVISED }}$ N.B.: (1) Question No. 1 is compulsory.(3) Assume suitable data and state it clearly.

1. (a) Convert (157.63$)_{8}$ into decimal, binary and hexadecimal system.
(b) Simplify using boolean laws:

$$
\overline{\overline{\mathrm{AB}}+\overline{\mathrm{A}}+\mathrm{AB}}
$$

(c) Design full adder using half adders.4
(d) State and prove De Morgan's theorem. 4
(e) Implement the boolean function with NAND - NAND logic

$$
F(A, B, C)=\Sigma m(0,1,3,5)
$$

2. (a) Using boolean laws, prove NAND and NOR gates as universal gates.
(b) Draw 3-bit binary up-down counter and explain the operation.
3. (a) What is race condition? How it is overcome in Master-slave J-K flip flop ? Explain.
(b) State truth table of 3 bit gray to binary conversion and design using $3: 8$ decoder 10 and additional gates.
4. (a) Simplify using K-map, $f(A, B, C, D)=\pi M(0,2,3,6,7,8,9,12,13)$ Write simplified 10 SOP and POS equations and draw logical diagram using NAND gates only.
(b) Simplify the function using Quine McClusky method. $f(A, B, C, D)=\Sigma m(4,5,8,10$ $9,11,12,13,15$) Draw the logical diagram using NAND gates.
5. (a) Draw a 2-input TTL NAND gate and explain its operation.
(b) Simplify $F(P, Q, R, S)=\pi M(3,4,5,6,7,10,11,15)$ and implement using minimum 10 no. of gates.
6. (a) Design MOD-6 synchronous counter and explain its operation. 10
(b) Draw 4 bit universal shift register and explain its operation.
7. Write short notes on :-
(a) Multiplexer and demultiplexer
(b) ALU
(c) Asynchronous vs synchronous counter
(d) Octal to binary encoder.
