Con		O_{-10} . O	
		Question No. 1 is compulsory (3 Hours) Applications	100
N.B.	: (1)	Attempt any four questions out of remaining six questions.	
		Assume suitable data and it clearly. S. E. Com Sem-III	
1.	(a)	Convert (1234-56) ₁₀ to Octal, Hexadecimal	4
	(b)	Perform following operation without converting to any other base.	8
		(i) (ABC) _H – (FEDC) _H	
		(ii) $(234 \cdot 12)_5 + (432 \cdot 34)_5$	
		(iii) (76) ₈ * (67) ₈	
		(iv) $(10101011)_2 \div (101)_2$	
	(c)	Represent (29) ₁₀ into Excess–3 code and Gray code.	4
	(d)	Design (1 : 16) Demultiplexer using (1 : 4)	4
	` '		
2.	(a)	(i) Subtract using 1's and 2's complement method $(73)_{10} - (49)_{10}$	2
		(ii) Perform BCD addition for number 56 and 65	2
		(iii) Perform $(11010)_2 \div (101)_2$	2
		(iv) Write Hamming code for number 01	2
	(b)	Simplify using Boolean Theorms and traw Logic Diagram for the following:-	12
		(i) ABC+ABC+ABC+ABC	
		(ii) $A [B + C (AC + AB)]$ (iii) $\overline{AB} (B + C) + AB (\overline{B} + \overline{C})$	
	•		
3.	(a)	Minimize the following logic function and realize using NAND gates $f(A, B, C, D) = \sum m(1, 3, 1, 8, 9, 11, 15) + d(2, 13)$	10
	(b)	Simplify using Quine-McCluskey method. Realize the equation using any universal	10
	(-)	gate.	
		$F(A, B, C, D) = \prod_{\bullet} (0, 2, 3, 6, 7, 8, 9, 12, 13)$	
4.	(a)	Design a MOD synchronous Up counter and explain its working.	10
	(b)	What is shift register? Explain 4 bit bi-directional shift register.	10
			10
5.	(a)	Implement the following Boolean function using 4:1 MUX	10
		$F(A, B, C, D) = \sum m(1, 2, 4, 6, 9, 12, 14)$	10
	(b)	Conver SR flip flop to D and T flip flop and draw the circuit.	10
6.	(a)	Draw 2-input TTL NAND gate and explain its operation.	10
	(b)	Prove that NAND and NOR gates as universal gate.	10
	•		20
7.	Write	e notes on following :-	20
		(a) ALU (b) PLA and PAL	
,		(c) Multiplexer and Demultiplexer	
		(d) Race around condition in JK flip flop.	