15E(A)

### **MATHEMATICS** Paper – I

## **MARCH 2008**

#### Parts A and B

[Maximum Marks: 50 Time: 2½ Hours]

#### Instructions:

- 1. Answer the questions under **Part-A** on a separate answer book.
- 2. Write the answers to the questions under **Part-B** on the question paper itself and attach it to the answer book of **Part-A**.

PART – A Time: 2 Hours Note: Marks: 5x2=10) Note:

- Answer ANY FIVE questions, choosing at least TWO from each of the following two groups i.e., A and B.
- 2. Each question carries 2 marks.

#### GROUP – A

(Statements and Sets, Functions, Polynomials)

- 1. Define implication with truth table and give an example.
- 2. Show that  $(\sim p) \lor (p \land q) \equiv (p \Longrightarrow q)$ .
- 3. Define One-to-One function. Show that f(x) = 3x - 2;  $x \in N$  is one-to-one.
- 4. State and prove Remainder Theorem.

#### GROUP – B

(Linear Programming, Real Numbers, Progressions)

5. Show the solutions of the following system of inequations through graphs.

 $x \ge 0; \qquad y \ge 0; \qquad x+y \le 1.$ 

- 6. Solve |3x 5| = 10.
- 7. Evaluate  $\lim_{x \to 0} \frac{\sqrt{1+x+x^2-1}}{x}$ .
- 8. 2, 4, 6, 8 ......are in A.P. Find the sum of 100 terms and n terms.

#### <u>SECTION – II</u>

(Marks 4x1=4)

#### Note:

- 1. Answer ANY FOUR of the following SIX questions.
- 2. Each question carries 1 mark.
  - 9. Write the Inverse and Contrapositive of the following conditional statement "If two triangles are congruent, then they are similar."
  - 10. If  $f(x) = \frac{x+1}{x-1}$ , then show that  $f(x) + f(\frac{1}{x}) = 0$ .
  - 11. Find the value of K so that  $x^3 3x^2 + 4x + K$  is exactly divisible by (x 2).
  - 12. At which of the points A(3, 0); B(0, 8), the function f = x + 4y is minimum?
  - 13. Find the product of  $(x)^{\frac{1}{2}} \cdot (x)^{\frac{3}{2}} \cdot (x)^{\frac{4}{3}}$ .
  - 14. Which term of the A.P. 5, 2, -1 ..... is -22?



(Marks 4x4=16)

#### Note:

- 1. Answer ANY FOUR questions, choosing TWO from each of the following groups i.e., A and B.
- 2. Each question carries 4 marks.

#### GROUP – A

(Statements and Sets, Functions, Polynomials)

- 15. Prove that for any three sets A, B, C;  $A - (B \cup C) = (A - B) \cap (A - C)$ (Use element-wise proof.)
- 16. If f(x) = x + 2;  $g(x) = x^2 x 2$ ;  $(x \in R)$ , Then find the value of  $\frac{g(1)+g(2)+g(3)}{f(-4)+f(-2)+f(2)}$
- 17. Let f, g, h be functions defined by f(x) = x, g(x) = 1 x and h(x) = x + 1.
  Find (i) (hog)of (ii) ho(gof).
  From (i) and (ii) what do you conclude?
- 18. Using mathematical induction, prove that

 $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$ 

#### GROUP – B

#### (Linear Programming, Real Numbers, Progressions)

19. A certain manufacturer has 75 kg. of cashew and 120 kg. of groundnuts. These are to be mixed in 1 kg. packages as follows: A low grade mixture 250 grams of cashew and 750 grams of groundnuts, whereas in a high grade mixture 500 grams of cashew and 500 grams of groundnuts. If the profit on the low grade mixture is Rs. 2 per package and that on high grade mixture is Rs. 3 per package, how many packages of each mixture be made for a maximum profit?

(Write Objective function and System of Inequations without graph)

- 20. If  $y = \sqrt[3]{3} + \frac{1}{\sqrt[3]{2}}$ , then show that  $3y^3 9y = 10$ .
- 21. If (b + c), (c + a) and (a + b) are in H.P., show that  $\frac{1}{a^2}$ ,  $\frac{1}{b^2}$ ,  $\frac{1}{c^2}$  will also be in H.P.
- 22. If the sum of the first n natural numbers is  $S_1$  and that of their squares is  $S_2$  and cubes is  $S_3$ , then show that  $9S_2^2 = S_3(1 + 8S_1)$ .

#### <u>SECTION – IV</u>

(Marks 1x5=5)

(Linear Programming, Quadratics Equations and Inequations)

Every student's vision

#### Note:

- 1. Answer ANY ONE question from the following.
- 2. It carries 5 marks.

23. Maximise f = 2x + y, subject to the constraints

i. 
$$2x + 5 \le 8$$

ii.  $y \leq 4$ 

- iii.  $x \leq 3$
- iv.  $x \ge 0$
- v.  $y \ge 0$
- 24. Using the graph of  $y = x^2$ , Solve the equation  $x^2 4x + 3 = 0$ .

## 15E(B)

#### PART – B

#### Time: 30 minutes

Note:

- 1. Each question carries ½ mark.
- 2. Answers are to be written in the question paper only.
- 3. All questions are to be answered.
- 4. Marks will not be given for over-written, re-written (or) erased answers.

# I. Write the CAPITAL LETTERS of the correct answer in the brackets provided against each question.

| 1.  | $p \lor (q \land r) \equiv (p \lor q) \land$                           | $(p \lor r)$ is                      |                        |                        |
|-----|------------------------------------------------------------------------|--------------------------------------|------------------------|------------------------|
|     | (A) Commutative Law                                                    | (B) Distributive Law                 | (C) Identity Law       | (D) De Morgan's Law    |
| 2.  | If $A \subset B$ and $n(A) = 5$                                        | $n(B) = 6$ , then $n(A \cup B)$      | $B) = \cdots$          |                        |
|     | (A) 6                                                                  | (B) 5                                |                        | (D) None               |
| 3.  | If $f(x) = x^2 - x + 6$ , t                                            | hen $f(4) =$                         | ya visiui              | 1                      |
|     | (A) 0                                                                  | (B) 18 Every                         | student's vision       | (D) 2                  |
| 4.  | $f(x) = x^2 + 4x - 12,$                                                | what are the zeroes of 🔅             | 2                      |                        |
|     | (A) {-6, 2}                                                            | (B) {6, 2}                           | (C) {3, 2}             | (D) {-3, -2}           |
| 5.  | The inequation for $1 <$                                               | <i>x</i> < 3 is                      |                        |                        |
|     | (A) $x^2 + 4x + 3 < 0$                                                 | (B) $x^2 - 4x + 3 < 0$               | (C) $x^2 - 4x - 3 < 0$ | (D) $x^2 + 4x - 3 < 0$ |
| 6.  | The curve of the graph of $x = my^2$ ( $m > 0$ ) lies in the quadrants |                                      |                        |                        |
|     | (A) 1 and 2                                                            | (B) 2 and 3                          | (C) 3 and 4            | (D) 1 and 4            |
| 7.  | The point that lies in th                                              | e half plane $x + y < 3$ is          | 5                      |                        |
|     | (A) (1, 1)                                                             | (B) (2 <i>,</i> 2)                   | (C) (3, 3)             | (D) (4, 4)             |
| 8.  | 16 <sup>0.5</sup> =                                                    |                                      |                        |                        |
|     | (A) 5.43                                                               | (B) 45                               | (C) 8                  | (D) 4                  |
| 9.  | The 7 <sup>th</sup> term of the serie                                  | es $1, -\frac{1}{2}, \frac{1}{4}$ is |                        |                        |
|     | (A) $-\frac{1}{8}$                                                     | (B) $\frac{1}{16}$                   | (C) $-\frac{1}{32}$    | (D) $\frac{1}{64}$     |
| 10. | If <i>a</i> , <i>b</i> , <i>c</i> are in G.P., the                     | n                                    |                        |                        |
|     | (A) $a = bc$                                                           | (B) $b^2 = ac$                       | (C) $c = ab$           | (D) $a^2 = bc$         |
|     |                                                                        |                                      |                        |                        |

Marks: 15

| II. | Fill in the blanks with suitable answers.                                       |
|-----|---------------------------------------------------------------------------------|
| 11. | The truth value of implication statement:                                       |
|     | If 3+2 = 5, then 1X0 = 0 is                                                     |
| 12. | The set builder form of B = {1, 8, 27, 64, 125} is                              |
| 13. | $f(x) = x^3$ ; $g(x) = x^2 - 2$ for $x \in R$ ; then $gof(x)$                   |
| 14. | The 5 <sup>th</sup> term in the expansion of $(3x + 4)^6$ is                    |
| 15. | If the sum of co-efficients of polynomial $f(x)$ is zero, then is factor to it. |
| 16. | Any point $(x, y)$ in the feasible region gives a solution to LPP is called     |
| 17. | $64^x = 2\sqrt{2}$ , then $x =$                                                 |
| 18. | The limiting position of secant of a Circle is                                  |
| 19. | If $x + y, x - y, x - 3y$ , are in A.P., then the 15 <sup>th</sup> term is      |
| 20. | Sum of n terms of the progression 1, 4, 9, 16 isis                              |

III. For the following questions under Group-A, choose the correct answer from the master list Group-B and write the letter of the correct answer in the brackets provided against them.

Group – B (i) Group – A 21. If  $A \subset B$ , then  $A \cap B = \dots$ [.....] (A) -15 22. Product of roots of equation (B) Identity Function [.....]  $x^2 - 3x - 15 = 0$ .... 23. If f(x) = x, then f is ..... Every student (C)iston 24. Solutions of x < 0; y < 0 lie in ..... (D)  $x \ge a$  (or)  $x \le -a$ [.....] 25.  $|x| \ge a$ [.....] (E)  $-a \le x \le a$ (F) B (G) III (H) IV (ii) Group – A Group – B 26. If  $\sqrt{x^a} = x^{\frac{2}{3}}$ , then a = ....[.....] (I) 1 (J)  $\frac{2}{3}$ 27.  $a^x = b, b^y = c, c^z = a$ , then the value [.....] of  $xyz = \dots$ 28. In a G.P.; a = 2, S\_ = 6, then r = ...... (K)  $G^2 = AH$ [.....] 29. Relation between A.M., G.M., H.M. [.....] (L) x + 230. If f(x) = x + 2, g(x) = x, then [.....]  $(M)\frac{4}{3}$ fog(x) =(N) x(O)  $A^2 = GH$ (P)  $\frac{4}{9}$