## MATHEMATICS Paper - I

## MARCH 2008

## Parts A and B

[Maximum Marks: 50 Time: 2½ Hours]

## Instructions:

1. Answer the questions under Part-A on a separate answer book.
2. Write the answers to the questions under Part-B on the question paper itself and attach it to the answer book of Part-A.

## PART - A

Time: 2 Hours
Marks: 35

(Marks: 5x2=10)
Note:

1. Answer ANY FIVE questions, choosing at least TWO from each of the following two groups i.e., A and B.
2. Each question carries 2 marks.

> GROUP - A
(Statements and Sets, Functions, Polynomials)

1. Define implication with truth table and give an example.
2. Show that $(\sim p) \vee(p \wedge q) \equiv(p \Longrightarrow q)$.
3. Define One-to-One function.

Show that $f(x)=3 x-2 ; x \in N$ is one-to-one.
4. State and prove Remainder Theorem.
GROUP - B
(Linear Programming, Real Numbers, Progressions)
5. Show the solutions of the following system of inequations through graphs.

$$
x \geq 0 ; \quad y \geq 0 ; \quad x+y \leq 1
$$

6. Solve $|3 x-5|=10$.
7. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sqrt{1+x+x 2}-1}{x}$.
8. $2,4,6,8$.......are in A.P. Find the sum of 100 terms and $n$ terms.

## SECTION - II

(Marks 4×1=4)

## Note:

1. Answer ANY FOUR of the following SIX questions.
2. Each question carries 1 mark.
3. Write the Inverse and Contrapositive of the following conditional statement - "If two triangles are congruent, then they are similar."
4. If $f(x)=\frac{x+1}{x-1}$, then show that $f(x)+f\left(\frac{1}{x}\right)=0$.
5. Find the value of K so that $x^{3}-3 x^{2}+4 x+K$ is exactly divisible by $(x-2)$.
6. At which of the points $\mathrm{A}(3,0) ; \mathrm{B}(0,8)$, the function $f=x+4 y$ is minimum?
7. Find the product of $(x)^{\frac{1}{2}} \cdot(x)^{\frac{3}{2}} \cdot(x)^{\frac{4}{3}}$.
8. Which term of the A.P. $5,2,-1 \ldots \ldots$ is -22 ?
(Marks 4x4=16)

## Note:

1. Answer ANY FOUR questions, choosing TWO from each of the following groups i.e., $\mathbf{A}$ and $\mathbf{B}$.
2. Each question carries 4 marks.

> GROUP - A
(Statements and Sets, Functions, Polynomials)
15. Prove that for any three sets $A, B, C$;
$A-(B \cup C)=(A-B) \cap(A-C)$
(Use element-wise proof.)
16. If $f(x)=x+2 ; g(x)=x^{2}-x-2 ; \quad(x \in R)$, Then find the value of $\frac{g(1)+g(2)+g(3)}{f(-4)+f(-2)+f(2)}$
17. Let $\mathrm{f}, \mathrm{g}$, h be functions defined by $f(x)=x, g(x)=1-x$ and $h(x)=x+1$.

Find (i) (hog)of (ii) ho(gof).
From (i) and (ii) what do you conclude?
18. Using mathematical induction, prove that
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots \ldots .+\frac{1}{n(n+1)}=\frac{n}{n+1}$.

## GROUP - B

(Linear Programming, Real Numbers, Progressions)
19. A certain manufacturer has 75 kg . of cashew and 120 kg . of groundnuts. These are to be mixed in 1 kg . packages as follows: A low grade mixture 250 grams of cashew and 750 grams of groundnuts, whereas in a high grade mixture 500 grams of cashew and 500 grams of groundnuts. If the profit on the low grade mixture is Rs. 2 per package and that on high grade mixture is Rs. 3 per package, how many packages of each mixture be made for a maximum profit?
(Write Objective function and System of Inequations without graph)
20. If $y=\sqrt[3]{3}+\frac{1}{\sqrt[3]{3}}$, then show that $3 y^{3}-9 y=10$.
21. If $(b+c),(c+a)$ and $(a+b)$ are in H.P., show that $\frac{1}{a^{2}}, \frac{1}{b^{2}}, \frac{1}{c^{2}}$ will also be in H.P.
22. If the sum of the first n natural numbers is $S_{1}$ and that of their squares is $S_{2}$ and cubes is $S_{3}$, then show that $9 S_{2}^{2}=S_{3}\left(1+8 S_{1}\right)$.

SECTION - IV
(Marks 1x5=5)

## (Linear Programming, Quadratics Equations and Inequations)

## Note:



1. Answer ANY ONE question from the following.
2. It carries 5 marks.
3. Maximise $f=2 x+y$, subject to the constraints
i. $\quad 2 x+5 \leq 8$
ii. $y \leq 4$
iii. $x \leq 3$
iv. $\quad x \geq 0$
v. $y \geq 0$
4. Using the graph of $y=x^{2}$, Solve the equation $x^{2}-4 x+3=0$.

## PART - B

Time: $\mathbf{3 0}$ minutes
Marks: 15

## Note:

1. Each question carries $1 / 2$ mark.
2. Answers are to be written in the question paper only.
3. All questions are to be answered.
4. Marks will not be given for over-written, re-written (or) erased answers.
I. Write the CAPITAL LETTERS of the correct answer in the brackets provided against each question.
5. $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$ is
(A) Commutative Law
(B) Distributive Law
(C) Identity Law
(D) De Morgan's Law
6. If $A \subset B$ and $n(A)=5 ; n(B)=6$, then $n(A \cup B)=\cdots$
(A) 6
(B) 5
(C) $11 \mathrm{~V}=\|\mathrm{D}\|$ (D) None
7. If $f(x)=x^{2}-x+6$, then $f(4)=\ldots \ldots \ldots$.
(A) 0
(B) 18
Every ste' ${ }^{\prime} \mathrm{E}^{n t}$ 's vision
(D) 2
8. $f(x)=x^{2}+4 x-12$, what are the zeroes of ?
(A) $\{-6,2\}$
(B) $\{6,2\}$
(C) $\{3,2\}$
(D) $\{-3,-2\}$
9. The inequation for $1<x<3$ is $\qquad$
(A) $x^{2}+4 x+3<0$
(B) $x^{2}-4 x+3<0$
(C) $x^{2}-4 x-3<0$
(D) $x^{2}+4 x-3<0$
10. The curve of the graph of $x=m y^{2}(m>0)$ lies in the quadrants
(A) 1 and 2
(B) 2 and 3
(C) 3 and 4
(D) 1 and 4
11. The point that lies in the half plane $x+y<3$ is
(A) $(1,1)$
(B) $(2,2)$
(C) $(3,3)$
(D) $(4,4)$
12. $16^{0.5}=$ $\qquad$
(A) 5.43
(B) 45
(C) 8
(D) 4
13. The $7^{\text {th }}$ term of the series $1,-\frac{1}{2}, \frac{1}{4}$. $\qquad$ ..is
(A) $-\frac{1}{8}$
(B) $\frac{1}{16}$
(C) $-\frac{1}{32}$
(D) $\frac{1}{64}$
14. If $a, b, c$ are in G.P., then
(A) $a=b c$
(B) $b^{2}=a c$
(C) $c=a b$
(D) $a^{2}=b c$

## II. Fill in the blanks with suitable answers.

11. The truth value of implication statement:

If $3+2=5$, then $1 \times 0=0$ is $\qquad$
12. The set builder form of $B=\{1,8,27,64,125\}$ is $\qquad$
13. $f(x)=x^{3} ; g(x)=x^{2}-2$ for $x \in R$; then $g \circ f(x)$
14. The $5^{\text {th }}$ term in the expansion of $(3 x+4)^{6}$ is $\qquad$
15. If the sum of co-efficients of polynomial $f(x)$ is zero, then $\qquad$ is factor to it.
16. Any point $(x, y)$ in the feasible region gives a solution to LPP is called $\qquad$
17. $64^{x}=2 \sqrt{2}$, then $x=$ $\qquad$
18. The limiting position of secant of a Circle is $\qquad$
19. If $x+y, x-y, x-3 y$, $\qquad$ are in A.P., then the $15^{\text {th }}$ term is $\qquad$
20. Sum of n terms of the progression $1,4,9,16$ $\qquad$ is $\qquad$
III. For the following questions under Group-A, choose the correct answer from the master list Group-B and write the letter of the correct answer in the brackets provided against them.
(i) Group - A
21. If $A \subset B$, then $A \cap B=$
22. Product of roots of equation $x^{2}-3 x-15=0$
23. If $f(x)=x$, then $f$ is ......
24. Solutions of $x<0 ; y<0$ lie in .....
25. $|x| \geq a$

Group - B
(A) -15
[.........]
(B) Identity Function
[..........]
Every. Student (C) isAon
[.........]
(D) $x \geq a$ (or) $x \leq-a$
[.........] $\quad$ (E) $-a \leq x \leq a$
(F) B
(G) III
(H) IV
(ii) Group - A
26. If $\sqrt{x^{a}}=x^{\frac{2}{3}}$, then $a=\ldots .$.
[.........] (I) 1
27. $a^{x}=b, b^{y}=c, c^{z}=a$, then the value of $x y z=$ $\qquad$
28. In a G.P.; $a=2, S_{-}=6$, then $r=$ $\qquad$ [.........]
29. Relation between A.M., G.M., H.M.
[.........]
30. If $f(x)=x+2, g(x)=x$, then $f \circ g(x)=$
(K) $G^{2}=A H$
(L) $x+2$

## Group - B

(J) $\frac{2}{3}$
(M) $\frac{4}{3}$
(N) $x$
(O) $A^{2}=G H$
(P) $\frac{4}{9}$

