AB-3361

Seat No. _____

M. Phil. Examination

April / May - 2003

Mathematics: Paper - II

Time: Hours]

[Total Marks: 75

Q.1. Attempt any three of the following:

(17)

- (a) Describe the general form of making a Prism. Using this process define a polytope of each dimension n. For this polytope of dimension n, verify Euler's generalized formula. Also find the value of N_2^4 .
- (b) What is a Schlegel Diagram? Draw Schlegel Diagrams of all the five Platonic Solids.
- (c) Give a proof of Euler's Formula.
- (d) Show that there is no regular polyhedron all faces of which are hexagons.
- Q.2. Attempt any three of the following:

(15)

- (a) Define a partially ordered set and a lattice. Give three examples of lattice. Also give an example of a partially ordered set which is not a lattice.
- (b) Define a Boolean Algebra. Simplify the following Boolean expressions:
 - (i) $(a*b)' \oplus (a \oplus b)'$
 - (ii) $(a'*b'*c) \oplus (a*b'*c) \oplus (a*b'*c')$
 - (iii) $(1*a) \oplus (0*a')$
- (c) Define a Boolean Ring. In a Boolean ring A, prove that
 - (i) p+p=0 for all p in A
 - (ii) pq = qp for all p, q in A
- (d) Put $P^{\perp} = \overline{P}$. Show that
 - (i) $P \subseteq Q \Rightarrow Q^{\perp} \subseteq P^{\perp}$
 - (ii) If P is open, then $P \subseteq P^{\perp \perp}$
 - (iii) If P is open, then $P^{\perp} = P^{\perp \perp \perp}$

Q.3. Attempt any three of the following:

(15)

- (a) Show that $x \in \overline{A}$ iff there exists a filter \Im containing A which converges to x
- (b) Show that a filter $\mathfrak F$ on X is an ultrafilter iff for each subset E of X either $E \in \mathfrak F$ or $X E \in \mathfrak F$.
- (c) What is βN ? Show that it is a compact, Hausdorff space. Write a most important property of βN .
- (d) Show that there are uncountably many distinct ultrafilters on N.
- Q.4. Attempt any three of the following:

(15)

- (a) For an infinite set X, show that $|Xx\{0,1\}| = |X|$. Using this show that every set X can be partitioned into sets A, B such that |A| = |B| = |X|.
- (b) Define an ordinal. Write down the first three elements of any ordinal. Describe the difference between 2ω and ω 2.
- (c) Show that $|\mathfrak{P}(X)| = |2^{x}|$.
- (d) Describe the topology of $[0,\omega]$, where ω is the first infinite ordinal number. Show that $[0,\Omega]$, where Ω is the first uncountable ordinal, is not separable.
- Q.5. Attempt any three of the following:

(15)

- (a) Show that a metric space X is compact iff every real valued continuous function on X is bounded.
- (b) State and prove Scroder-Bernstein Theorem
- (c) Describe two instances, where one can describe geometrically a 1-1 correspondence.
- (d) Let $Q = \{r_1, r_2, ...\}$ and $f: R \to R$ be defined as $f(r_n) = \frac{1}{n}$ and f(x) = 0 if x is not a rational. Describe the continuity of f.