w.w.w.all subjects for you.com

Roll No.

Total No. of Questions: 09]

[Total No. of Pages: 02

Paper ID [MC301]

(Please fill this Paper ID in OMR Sheet)

MCA (Sem. - 3rd)

COMPUTER SYSTEM ARCHITECTURE (MCA - 301) (N2)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Attempt any one question from each Sections A, B, C & D.
- 2) Section E is Compulsory.

Section - A

 $(1 \times 10 = 10)$

- **Q1)** (a) Explain the data flip-flop?
 - (b) Simplify the expression x = (A' + B)(A + B + D)D'.
 - (c) Solve the expression Z (A, B, C, D) = Σ (0,1,4,6,7,8,9,12,14,15) using K-map.
- Q2) (a) Design a MOD13 Counter using J-K Flip Flop and NAND Logic Gates.
 - (b) Design the 8-Bit Full adder Circuit.

Section - B

 $(1 \times 10 = 10)$

- **Q3)** (a) Show the Block Diagram to execute the statement $xT_3: A \leftarrow B, B \leftarrow A$.
 - (b) Show the Hardware implementation of the following statements. The registers are 4 bits in length

$$T_0: A \leftarrow R_0$$

$$T_1: A \leftarrow R_1$$

$$T_2: A \leftarrow R_2$$

$$T_3: A \leftarrow R_3$$

Q4) Design a Logic Circuit of a processor with truth table.

Section - C

 $(1 \times 10 = 10)$

Q5) (a) Write a micro program that compares two unsigned binary number stored in R1 & R2. The register containing the smaller number is then cleared. If the two numbers are equal, both numbers are cleared.

R- 405 [2058]

P.T.O.

		(i) Micro operation (ii) Micro instructions(iii) Micro program.
Q6)	(a)	Convert the following arithmetic expression from infix to reverse Polish notations.
		(i) $A*B + C*D + E*F$.
		(ii) $A*B + A* (B*D + C*E)$.
		(iii) $(A^*[B+C^*(D+E)])/(F^*(G+H))$.
	(b)	What is RISC and CISC? Differentiate them.
		Section - D
Q7)	A cc	omputer uses chips of $1024x1$ capacity. (1 × 10 = 10)
	(a)	How many chips are needed and how should their address lines be connected to provide a memory capacity of 1024 bytes.
	(b)	How many chips are needed to provide a memory capacity of 16 K bytes? Explain in words how the chips are to be connected to address bus.
Q8)	(a)	Explain Virtual Memory.
	(b)	Explain the Auxiliary Memory.
		Section - E
Q9)	a)	Draw the logic circuit for $y = (a'+b+c)(a+b+c')$ using any of the universal Gate.
	b)	Suppose a ROM has 8 input address lines, How many memory location does it have, Range them. 2
	c)	Convert the 634 decimal into its BCD equivalent.
	d)	Name the various Addressing Modes for pointing a data in a memory location. 3
	e)	Explain the various types of Interrupts. 3
	f)	What is a Cache memory?
	g)	Differentiate between Microprogramming and Hardwired control unit. 4

(b) Explain the following.

000