5171A

Your Roll No

B.Sc. Prog. / III

Ţ

CH-301— CHEMISTRY

[O.C.: Admissions of 2007 and before]

Time: 3 hours

Maximum Marks · 75

(Write your Roll No on the top immediately on receipt of this question paper)

Use separate answer-sheets for Sections A and B

You are allowed to use any type of calculators
except mobile calculators but you cannot
share it. However log tables will be
provided if asked for.

Section A

Marks 50

(Inorganic Chemistry)

Attempt any four questions

Question No. 1 carries 14 marks
All other questions carry 12 marks each

1. (a) Explain the following:

(i) The metallic character of transition elements decreases almost regularly from Sc to Cr, remains constant upto Ni, and then decreases.

- (ii) Transition elements usually exhibit higher oxidation states in their fluorides than in carbon monoxide.
- (iii) Lanthanides form fewer complexes as compared to transition elements, though their ions have high charge.
- (iv) Although [NiCl₄]²⁻ and Ni(CO)₄ are tetrahedral but they differ in magnetic behaviour.
- (v) Low-spin tetrahedral complexes are not known. $2\times5=10$
- (b) Given below is the Latimer diagram for Cobalt in acidic medium:

$$CoO_2 \xrightarrow{18} Co^{3+} \xrightarrow{182} Co^{2+} \xrightarrow{-0.28} Co$$

- (i) Which is the stable oxidation state?
- (ii) Do any species undergo disproportionation?4
- (a) Compound (A) when treated with Na₂CO₃ in the presence of excess O₂ gives a yellow coloured compound (B). B on treatment with H₂SO₄ and KCl gives an orange coloured compound (C). When (C) is heated with NH₄Cl it gives a green coloured compound (D). Identify A to D and also write the chemical reactions

- (b) What happens when— (Give chemical equations.)
 - (1) Oxalic acid is added to acidic KMnO₄
 - (11) Sodium nitroprusside is treated with Na₂S
 - (iii) K₃[Fe(CN)₆] is added to the solution of FeSO₄
 - (iv) Cobalt nitrate in acetic acid is treated with NaNO₂? 2×4
- 3. (a) Explain hybridisation, structure and magnetic behaviour of the following complexes:
 - $(\iota) [MnBr_4]^{2-}$
 - (n) [Ni(Et₃P)₂Br₂]
 - (*uu*) $[Cr(NH_3)_6]^{3+}$.

 3×3

- (b) Name the type of isomerism in the following pairs:
 - (i) $[Co(NH_3)_5I]SO_4$ and $[Co(NH_3)_5SO_4]I$
 - (u) $[Cr(SCN)_4(H_2O)_2]^-$ and $[Cr(NCS)_4(H_2O)_2]^-$
 - (ui) [Cu(NH₃)₄][PtCl₄] and [Pt(NH₃)₄][CuCl₄]

1x3

4. (a) Name the following complexes on the basis of IUPAC.

- (i) $(CH_3)_4N[Co(NCS)_4(H_2O)_2]$
- (ii) [Cr(en)₂Cl₂]Cl

(iii)
$$\begin{bmatrix} (NH_3)_4Rh & NH \\ OH & CH \end{bmatrix}^{3+}$$

- (iv) [Pt(NH₃)PyClB₁]
- (v) [Cu(NH₃)₄][CuCl₄]
- (vi) Mn₂(CO)₁₀

1×6

- (b) Complete the following reactions:
 - (i) $Cr(CO)_6 + 2PF_3 \longrightarrow$
 - (ii) $Ni(CO)_4+2NO\longrightarrow$
 - (iii) Fe(CO)₅ _____
 - (iv) $Mn_2(CO)_{10}$ \longrightarrow

1×4

(c) Draw the structure of Zeiss salt

2

5. (a) Complexes of Co(III) like [Co(NH₃)₆]³⁺, [Co(en)₃]³⁺ and [Co(NO₂)₆]³⁻ are diamagnetic and yellow in colour whereas [Co(H₂O)₆]³⁺ is paramagnetic and blue in colour, explain on the basis of CFT.

- (b) Which of the following complexes show higher value of Δ_0 and why?
 - (1) $[N_1(H_2O)_6]^{2+}$ and $[N_1Cl_4]^{2-}$
 - (u) $[CrCl_6]^{3-}$ and $[Cr(en)_3]^{3+}$

 2×2

- (c) In terms of Crystal Field theory explain why a d⁹ octahedral complex with six identical ligands is not expected to have all six metal donor distance identical.
- 6. (a) What do you mean by lanthanide contraction?
 What are its causes? How does it affect the chemistry of post-lanthanide elements?

 4
 - (b) Work out the number of unpaired electrons in the following ions:

- (c) (i) Higher oxidation states are more common for actinides than for lanthanides Why?
 - (u) Actinides form oxocations but lanthanides do not Why? 2×2

SECTION B

Marks 25

(Physical Chemistry)

Attempt any two questions.

All questions carry equal marks.

- 7. (a) What is meant by the term 'half-life period'?

 Show that the half-life period of a second order reaction is inversely proportional to the initial concentration of the reactants. The half-life period of a substance is 46 minutes at a certain concentration. When the concentration is reduced to one half of the initial concentration, the half-life period is 23 minutes. Find the order of the reaction.

 1+2+21/2
 - (b) Explain why the hydrolysis of an ester in the presence of a dilute acid follows first order kinetics while that in the presence of a dilute alkali follows second order kinetics.
 - (c) In the following reaction scheme, write the differential rate equation for the removal of species A, B, C, and D:

$$A+B \xrightarrow{k_1} C+D$$

$$C+D \xrightarrow{k_2} A+B$$

$$C+B \xrightarrow{k_3} E+D$$

$$2D \xrightarrow{k_4} F$$

8. (a) Distinguish between Weiss Indices and Miller Indices. Compute Weiss Indices and Miller Indices for the faces with the following intercepts with the three axes perpendicular to each other:

4

(i) 2a, 3b, 2c

$$(u) a, \frac{b}{3}, \frac{c}{2}$$

$$(ui) \frac{a}{2}, \frac{b}{4}, \infty$$

 $(iv) \infty, b, \infty$

2 + 4

- (b) Write short notes on the following:
 - (i) The Powder method
 - (ii) Packing efficiency in crystals
 - (iu) The law of constancy of interfacial angles.

21/2 + 21/2

- (c) Sketch (100), (110) and (111) planes. 11/2
- 9. (a) Define 'Quantum yield' of a reaction. Why is it that in certain cases, quantum yield is lower than that expected from Einstein law of photochemical equivalence? Give suitable examples to validate your point.
 2+21/2
 - (b) Explain briefly fluorescence and chemiluminiscence. 21/2+21/2
 - (c) The dissociation energy of hydrogen is 102900 cal mol⁻¹. If hydrogen is dissociated by illumination with radiation of wavelength 2537 Å, what

fraction of radiant energy will be converted into kinetic energy?

- 10. (a) What are enzymes? How do they differ from inorganic catalysts? 11/2+21/2
 - (b) Describe the factors that affect the enzyme catalysed reactions with suitable examples. 31/2
 - (c) Write down the mechanism of enzyme catalysis suggested by Michaelis and Menten. What is the significance of Michaelis constant?

Values of some Physical Constants:

Planck constant $h=6.627\times10^{-34}$ Js

Boltzmann constant $k=1.38\times10^{-24}$ JK⁻¹

Avagardro Number $N=6.06\times10^{23}$