Con. 5926-08.
N.B. (1) Questions No. 1 is compulsory.
(2) Attempt any four questions from the remaining six questions.
(3) Figures to the right indicate full marks.

1. (a) Find the characteristic equation of the matrix $A=\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$ and show that the 5 equation is also satisfied by A .
(b) A vector field is given by $F=(\sin y) i+x(1+\cos y) j$ then evaluate $\int F \cdot d r$ over a circular path given by $x^{2}+y^{2}=a^{2}, z=0$.
(c) If $F=3 x y i+4 y z^{2} j-5 x z k$ and $\phi=y^{2}-z x$ then find: $\operatorname{Div}(\phi F)$) and curl ($\left.\phi F\right)$.
(d) State and prove Cauchys Integral formula.
2. (a) Find the directional derivative of the function $f=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line PQ where Q is the point $(5,0,4)$.
(b) Find all the eigenvalues and eigenvectors of the matrix :

$$
A=\left[\begin{array}{rrr}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

(c) Find all possible Laurent's expansion of the function $f(z)=\frac{z^{3}-6 z-1}{(z-1)(z-3)(z+2)}$ about $z=3 \quad 8$ indicating the region of convergence.
3. (a) Prove that $F=\left(y^{2} \cos x+z^{3}\right) i+(2 y \sin x-4) j+\left(3 x z^{2}+2\right) k$ is a conservative field and find scalar potential ϕ such that $F=\nabla \phi$.
(b) Define: (1) Singular point
(2) Isolated singular point
(3) Essential singular point, with one example.
(c) Reduce the quadratic form $2 x+6 x z$ to sum of squares by linear transformation. Also find the rank, index and signature.
4. (a) State Residue theorem and evaluate the integral $\oint_{c} \frac{z-3}{z^{2}+2 z+5} d z$ where C is the circle
(1) $|z+1-i|=2$
(2) $|z+1+i|=2$.
(b) Test whether the matrix $A=\left[\begin{array}{rrr}7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4\end{array}\right]$ is derogatory ?
(c) Verify Green's theorem in the plane for

$$
\oint_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y
$$

where C is the boundry of the region defined by $y=\sqrt{x}, y=x^{2}$.
5. (a) If $A=\left[\begin{array}{rr}2 & 3 \\ -3 & -4\end{array}\right]$ then prove that $A^{50}=\left[\begin{array}{rr}-149 & -150 \\ 150 & 151\end{array}\right]$.
(b) Evaluate $\iint_{S} F \cdot d$ for $F=18 z i-12 x j+3 y k$ where S is area of the plane $2 x+3 y+6 z=12$ lying in the first octant.
(c) Evaluate
(1) $\int_{0}^{2 \pi} \frac{1}{5+4 \cos \theta} d \theta$
(2) $\int_{0}^{\infty} \frac{1}{\left(x^{2}+a^{2}\right)} d x$.
6. (a) Verify Cauchys Integral theorem for $f(z)=z^{2}$ along a circle $\mathrm{C},|\mathrm{z}|=1$.
(b) Apply Stokes theorem to evaluate-

$$
\int_{C}[(x+2 y) d x+(x-z) d y+(y-z) d z]
$$

where C is the boundry of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$ oriented in the counter clockwise direction.
(c) Test whether the matrix $\mathrm{A}=\left[\begin{array}{rrr}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$ is diagonalisable? If yes, find the transforming 8 matrix P and the diagonal matrix D .
7. (a) (i) If λ_{1}, λ_{2} and λ_{3} are the eigenvalues of the matrix

$$
\left[\begin{array}{rrr}
-2 & -9 & 5 \\
-5 & -10 & 7 \\
-9 & -21 & 14
\end{array}\right] \text { then find the values of (1) } \lambda_{1}+\lambda_{2}+\lambda_{3} \text { (2) } \lambda_{1} \lambda_{2} \lambda_{3}
$$

(ii) Prove that the characteristic roots of a Hermitian matrix are real.
(b) If $f(a)=\int_{c} \frac{4 z^{2}+z+4}{z-a} d z$ and C is $4 x^{2}+9 y^{2}=36$ then find: (1) $f(i)(2) f^{\prime}(1)(3) f^{\prime \prime}(i)$.
(c) Verify divergence theorem for $F=2 x^{2} y i+y^{2} j+4 x z^{2} k$ taken over the region in the first octant bounded by $\mathrm{y}^{2}+\mathrm{z}^{2}=9$ and $\mathrm{x}=2$.

