6992

Your Roll No

M.Tech. / II Sem.

J

NANOSCIENCE AND NANOTECHNOLOGY

PAPER NSNT-202 Computational Methods

Time 3 hours

Maximum Marks 38

(Write your Roll No on the top immediately on receipt of this question paper)

Attempt any four questions All questions carry equal marks

- 1 (a) Explain Newton-Raphson method of linding a root of the equation f(x)=0 Show that it has a second order convergence. Use the method to find root of the equation $x \sin x 1 \cdot 0 = 0$, starting with $x=1\cdot 0$ and use three iterations only 51/2
 - (b) Explain Ramanujan's iterative method which can be used to determine the smallest root of the equation f(x)=0. Use this method to find the smallest root of $x^3-6x^2+11x-6=0$
- 2 (a) Establish Newton's forward difference interpolation formula and the remainder terms (error in the formula) in terms of appropriate derivatives Find the value of $e^{1/17}$ using Gauss

forward formula from the following data (for x and e^x): (1 . 2 7183), (1 05 2 8577); (1 10 3 0042), (1 15 3 1582), (1 20 3 3201), (1 25 3 4903) and (1 30 3 6693)

- (b) Define the operators Δ , ∇ , δ , E and μ and show:
 - (i) $\mu E = E\mu$

(u)
$$\mu^2 = 1 + \frac{1}{4}\delta^2$$

3 (a) Use Gauss Quadrature method based on intervals of unequal width to calculate a definite integral Calculate the weights and abscissae for n=2. Obtain the first four Legendre polynomials using recurrence relation

$$(n+1)P_{n+1}(u) = (2n+1)uP_n(u) - nP_{n-1}(u).$$

Take $P_0(u) = 1$ and $P_1(u) = u$

(b) Use four point Gauss-Legendre formula to

evaluate the integral
$$\int_{0}^{1/2} \frac{1}{\sqrt{1-x^2}} dx$$

Abscissae and weights are

$$\pm u_i = 0.33998 \quad w_i = 0.65215$$

$$\pm u_i = 0.86114 \quad w_i = 0.34785 \qquad 3_{1/2}$$

4 (a) Discuss the finite difference method in a two point linear boundary value problem in an ordinary differential equation and estimate the error involved in this method

Use second order Runge-Kutta formula to evaluate $\frac{dy}{dx} = x+y$; where y(0)=1; for $x=0\cdot 3$, take $h=0\cdot 1$

- (b) Describe with equation Adams-Moulton method (Predictor-Corrector formula) to find the solution of a differential equation 4
- 5 (a) Obtain the expressions for the best value of the slope and intercept and their standard errors using least square method

 51/2
 - (b) Discuss different types of errors in an experimental data, standard error in a single and a set of observations

 4
- 6 Attempt any two of the following

 $9_{1/2}$

- (1) Obtain Trapezoidal formula for the evaluation of a definite integral. Work out the error involved in this method.
- (u) Obtain the electron-density equation for a crystal in terms of scattering amplitude and location of the atoms in a crystal using Fourier transforms

(111) Write the admittance and current matrix of the following circuit and find the voltage vector using matrix operations

$$R_1 = R_2 = R_3 = 1 \Omega$$

$$R_4=R_5=2 \Omega$$

$$I_2 = 1 \text{ amp}$$

$$I_3 = 2 \text{ amp}$$