

University of Hyderabad, Entrance Examination, 2004 Ph.D. (Statistics-OR)

Hall Ticket No.					
	i l	l		L	I

Time: 2 hours

Max. Marks: 75

Part A: 25

Part B: 50

Instructions

- 1. Calculators are not allowed.
- Part A carries 25 marks. Each correct answer carries 1 mark and each wrong answer carries 1/4 mark.
 So do not gamble. If you want to change any answer, cross out the old one and circle the new one. Over written answers will be ignored.
- Part B carries 50 marks. Instructions for answering Part B are given at the beginning of Part B.
- 4. Use a separate booklet for Part B.

Answer Part A by circling the correct letter in the array below:

1	a	b	С	d	е
2	a	b	С	d	e
3	a	b	С	d	e
4	a	b	С	d	е
5	a	b	С	d	е

6	a	b	С	d	е
7	a	b.	С	d	е
8	a	b	С	d	е
9	a	b	С	d	е
10	a	b	С	d	е

11	a	b	С	d	е
12	a	b	С	d	е
13	a	b	С	d	е
14	a	b	С	d	е
15	a	b	С	d	е

16	a	b	С	d	е
17	a	b	С	d	е
18	a	b	С	d	е
19	a	b	С	d	е
20	a	b	С	d	е

21	a	b	С	d	е
22	a	b	С	d	е
23	a	b	С	d	е
24	a	b	С	d	е
25	a	b	С	d	e

		·		
			·	
				·
·				
		,		

Find the correct answer and mark it on the answer sheet on the top page. A correct answer gets 1 mark and a wrong answer gets $-\frac{1}{4}$ mark.

- 1. The sum of the series $\sum_{1}^{\infty} \frac{1}{n(n+1)}$ is
 - (a) $\pi^2/6$
 - (b) $\pi^2/8$
 - (c) 1
 - (d) 2
 - (e) None of the above
- 2. Suppose A_n is a sequence of sets defined by $A_n = [0, 2]$ if n is odd and $A_n = [1, 3]$ if n is even. Then
 - (a) $\lim \sup A_n = \{3\} \text{ and } \lim \inf A_n = \{0\}.$
 - (b) $\lim \sup A_n = \{2\}$ and $\lim \inf A_n = \{1\}$
 - (c) $\lim \sup A_n = [2, 3] \text{ and } \lim \inf A_n = [0, 1]$
 - (d) $\lim \sup A_n = [0, 3]$ and $\lim \inf A_n = [1, 2]$.
 - (e) None of the above.
- 3. Let $x_n = 1 + \frac{(-1)^n}{n}$. Then
 - (a) $\{x_n\}$ does not converge.
 - (b) $\{x_n\}$ is convergent because $\{x_n\}$ is increasing and bounded above.
 - (c) $\{x_n\}$ is convergent because $\{x_n\}$ is decreasing and bounded below.
 - (d) $\{x_n\}$ is convergent because $\{x_n\}$ has finitely many distinct terms.
 - (e) none of the above is true.
- 4. If A = (-3, 3] and B = [-2, 2), then $A \triangle B$ is
 - (a) an an open interval.
 - (b) a closed interval
 - (c) an open set
 - (d) a closed set
 - (e) none of the above.

- 5. $\lim_{n\to\infty} \left(1-\frac{a_n}{n}\right)^n$, where $a_n=\left(1+\frac{2}{n}\right)^n$ is equal to
 - (a) 1.
 - (b) e^{-e^2} .
 - (c) e^{-2} .
 - (d) e^{-1} .
 - (e) none of the above.
- 6. If A, B, C are three events such that P(A)P(B)P(C) > 0 and P(B) > P(A), which of the following is always true?
 - (a) $A \subset B$.
 - (b) $P(\bar{A}) > P(\bar{B})$.
 - (c) P(B|C) > P(A|C).
 - (d) P(A) > P(B).
 - (e) None of the above.
- 7. If for a random variable X, E(X) = 0 and $E(X^2) = 0.6$, then
 - (a) $P[-1 \le X \le 1] \le 0.6$.
 - (b) $P[-1 \le X \le 1] \ge 0.6$.
 - (c) $P[-1 \le X \le 1] \le 0.36$.
 - (d) $P[-1 \le X \le 1] \ge 0.4$.
 - (e) nothing can be said about $P[-1 \le X \le 1]$.
- 8. A random variable X denotes number of failures before getting 1st success in independent identical Bernoulli trials with probability of success θ . If E(X) = 2.5 and Var(X) = 6.25, then $P[X \ge 2]$ is equal to
 - (a) 0.36.
 - (b) 0.6.
 - (c) 0.64.
 - (d) 0.08.
 - (e) none of the above.
- 9. X_1, \dots, X_n are i.i.d. continuous random variables and let R_1 be the rank of X_1 . Then $E(R_1)$ is
 - (a) $\frac{n+1}{2}$.
 - (b) $\frac{1}{n}$.

- (c) 1.
- (d) 0.
- (e) none of the above.
- 10. In a simple linear regression of Y on X, if the correlation coefficient between the regressor X and \hat{Y} which are the predicted values of Y is -1 then the regression between X and Y is
 - (a) -1.
 - (b) 1.
 - (c) -0.5.
 - (d) 0.5.
 - (e) none of the above.
- 11. Two samples of different sizes were independently drawn from two different populations which are to be compared. For sample 1, the mean is 10 and the variance is 4 and for sample 2, the mean is 145 and variance is 91.5. Which of the following measures will be most appropriate to make comparison of two populations?
 - (a) Kolmogorov-Smirnov statistic
 - (b) F statistic
 - (c) coefficient of variations
 - (d) two sample t statistic
 - (e) none of the above.
- 12. In SRSWOR of n units from a population of N units which are numbered, the probability that the (N-1)th and Nth population units are included in the sample is
 - (a) $\frac{N(N-1)}{N^2}$.
 - (b) $\frac{n(n-1)}{N(N-1)}$.
 - (c) $\frac{1}{\binom{n}{2}}$.
 - (d) $\frac{1}{\binom{N}{2}}$.
 - (e) none of the above.

- 13. To test certain hypotheses using some statistic T, a one sided right tailed critical region is considered. The p-value of the statistic based on the observed sample is 0.09 using Normal distribution under the null hypothesis. Hence its p-value using t-distribution with 15 degrees of freedom under the null hypothesis will be
 - (a) greater than 0.09.
 - (b) 0.05.
 - (c) less than 0.09.
 - (d) equal to 0.09.
 - (e) none of the above.
- 14. The 95^{th} sample percentile of 20 observations is 27. A positive constant a was added to three largest observations and subtracted from the remaining observations. The 95^{th} sample percentile of the new observations will be
 - (a) 27.
 - (b) 27 + a.
 - (c) 27 a.
 - (d) 27 + 0.95a.
 - (e) none of the above.
- 15. If $X \sim N_3 \begin{pmatrix} 0, \begin{pmatrix} 1 & 0.5 & 0 \\ 0.5 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix}$, $Var(X_2|X_1)$ is
 - (a) 4.
 - (b) 3.
 - (c) 4/3.
 - (d) 2.
 - (e) none of the above.
- 16. If $X_1, X_2 \sim U(-1, 1)$ and are independent, then $X_1 + X_2$ and $X_1 X_2$
 - (a) have different expected values.
 - (b) have same expected values but different variances.
 - (c) are independent.
 - (d) are equal almost everywhere.
 - (e) are identically distributed.

17. Suppose $\Omega = (-\infty, \infty)$, and $\mu((a, b]) = \Phi(b) - \Phi(a)$ where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-z^2/2} dz$. For a sequence of random variables $\{X_n\}$ defined as

$$X_n(\omega) = \left\{ egin{array}{ll} -1, & \omega \leq -n \ 0, & -n < \omega < n \ 1, & n \leq w. \end{array}
ight.$$

Then which of the following is not true?

- (a) $X_n \xrightarrow{P} 0$.
- (b) $V(X_n) \to 0$.
- (c) $X_n \nrightarrow 0$ almost surely.
- (d) $E(X_n) \to 0$.
- (e) $\Phi_n(t) \to 1$, where $\Phi_n(t)$ is the characteristic function of X.
- 18. If $\Phi(t)$ is the characteristic function of a random variable, which of the following is not a characteristic function?
 - (a) $\bar{\Phi}(t)$
 - (b) $(\Phi(t))^4$.
 - (c) $1 \frac{3}{8}(1 \Phi(t))$.
 - (d) $2\Phi(t) 1$.
 - (e) $|\Phi(t)|^4$.
- 19. A is a 3×3 nonsingular matrix with eigen values 1, 2, and 3. Hence the determinant of the matrix $B = A^2 2A$
 - (a) is 24.
 - (b) is 0.
 - (c) is 12.
 - (d) is 2.
 - (e) can not be computed based on the given information.
- 20. X_1, X_2, X_3 are i.i.d N(0,1) random variables. What should be the value of c so that $2X_1 3X_2 + 5X_3$ and $cX_1 + 2X_2 + 4X_3$ are independent?
 - (a) 3.
 - (b) -2.
 - (c) 7.
 - (d) -7.
 - (e) none of the above.

21. A finite state markov chain has following transition probability matrix.

$$\begin{pmatrix} 1/4 & 0 & 1/3 & 5/12 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/3 & 2/3 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$$

- (a) The markov chain is irreducible.
- (b) All states are recurrent.
- (c) {1, 4} and {2, 3} are closed communication classes.
- (d) {1, 4} is a closed communicating class but {2, 3} is not a closed communicating class.
- (e) {2, 3} is a closed communicating class but {1, 4} is not.
- 22. A large district is subdivided into 125 non overlapping blocks. Five blocks are selected at random and completely enumerated. This procedure of sampling is known as
 - (a) Proportional to size sampling.
 - (b) Stratified sampling.
 - (c) Systematic sampling.
 - (d) Cluster sampling.
 - (e) none of the above.
- 23. In a connected Block design with v treatments and b blocks, the rank of the C matrix is
 - (a) v-1.
 - (b) < v.
 - (c) 1.
 - (d) b-1.
 - (e) none of the above.

24. In a 2⁴ factorial design with two blocks of 8 plots each in a replication, it was decided to confound effect ABCD. If two blocks in a replication were incompletely constructed with following treatment combinations:

Block I: ab, cd, ac, ad, bc, bd

Block II: a, b, abc, acd, abd; bcd

The remaining treatments in Block I and Block II respectively are

- (a) (1, c) and (d, abcd).
- (b) (1,d) and ((c, abcd).
- (c) (c, abcd) and (d, abcd).
- (d) (1, abcd) and (c, d).
- (e) none of the above.
- 25. When the availabilities and demands are integers for a balanced Transportation problem then any basic feasible solution is
 - (a) mixed type.
 - (b) real type.
 - (c) integer type.
 - (d) may not exist.
 - (e) none of the above.

Part B

There are 10 questions in this part. Answer any 5 questions. Each question carries 10 marks. The maximum you can score is 50 marks. The answers should be written in the separate answer script supplied to you.

1. Let X be a random variable with cumulative distribution function

$$F(x) = \begin{cases} 0, & x < 0 \\ 0.6, & 0 \le x < 2 \\ 0.8 + \frac{1}{10}(x - 2), & 2 \le x < 4 \\ 1, & x \ge 4. \end{cases}$$

Find (a) $P[0 \le X \le 2]$. (b) E(X). (c) Median of X.

2. Consider the joint distribution of (X, Y) given below, where a,b,c and d are nonnegative, adding up to unity.

$$\begin{array}{c|cc} & X \\ Y & 0 & 1 \\ \hline 0 & a & b \\ 1 & c & d \\ \end{array}$$

- (a) If X and Y are uncorrelated, then show that X and Y are independent.
- (b) Give an example to show that this result may not hold in general if at least one of the random variable takes three values.
- 3. Suppose X_1, \dots, X_n are i.i.d.r.v.s with common probability distribution given by

$$P[X=x] = \frac{c(\theta)}{2^{x/\theta}}, \quad x=\theta, \ \theta+1,\cdots, \ 1<\theta<\infty.$$

- (a) Find $c(\theta)$.
- (b) Find a minimal sufficient statistic for θ .
- 4. X_1, \dots, X_n is a random sample with common probability mass function P[X = x] defined on $\{1, 2, \dots, N\}$. Based on the sample we wish to test $H_0: P[X = x] = \frac{1}{N}$ against $H_1: P[X = x] = \frac{2x}{N(N+1)}$.
 - (a) Determine the MP level α test.
 - (b) For N = 10 the sample observed is 5, 2. Will you reject H_0 at 0.01 level of significance? Justify.

- 5. T_1, T_2 and T_3 are unbiased estimators of $\theta_1 + \theta_3$, $\theta_1 \theta_2$ and $2\theta_1 \theta_2 + \theta_3$ respectively. The dispersion matrix of $(T_1, T_2, T_3)'$ is given to be $10\begin{pmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1 & 1/3 \\ 1/3 & 1/2 & 1 \end{pmatrix}$.
 - (a) Verify whether i) $\theta_2 + \theta_3$ ii) $\theta_1 2\theta_3$ is estimable.
 - (b) Find the BLUE and evaluate the variance of the BLUE of the estimable function(s) in (a) above.
- 6. Suppose

$$\underline{X} \sim N_3 \left(\underline{0}, \begin{pmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{pmatrix} \right)$$

Show that $X_1^2 - 2X_1X_2 + X_2^2 + X_3^2 \sim \chi_2^2$.

- 7. Suppose X_n , $n = 1, 2, \cdots$ are independent variables with $X_n \sim U\left(-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$. and $S_n = X_1 + \cdots + X_n$.
 - (a) Verify whether $\frac{S_n}{n} \to 0$ almost surely. State the results used.
 - (b) What can you say about the limiting distribution of $\sum_{i=1}^{n} \frac{X_n}{\sqrt{n}}$? Justify your answer.
- 8. For a connected, quadruplicate and variance balanced block design D with v treatments and b blocks, prove or disprove: $b \ge v$.
- 9. Solve the following LPP for $\theta_1 = 0$ and $\theta_2 = 0$ by graphical method and carry out the sensitivity for different values of θ_1 .

Maximize
$$Z=2x_1+3x_2$$
 subject to
$$x_1+4x_2 \leq 4+\theta_1 \ .$$
 $x_1+x_2 \leq 2+\theta_2$ x_1 and $x_2 \geq 0$.

10. On a particular day, a truck company has four trucks for sending material to six terminals. The costs of sending material by different trucks to different terminals are given in the table below.

	Trucks						
Terminals	A	В	С	D	Е		
1	3	6	2	6	5		
2	7	1	4	4	7		
3	3	8	5	8	3		
4	6	4	3	7	4		
5	5	2	4	3	2		
6	5_	7	6	2	5		

- (a) Find the optimal assignment solution to the company.
- (b) Find the optimal assignment solution to the company under the restriction that truck D is assigned to terminal 1.
- (c) Compute the percentage of loss due to the restriction in (b) above.