NOTE:

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total
Marks: 100
3.

a) Express

$$
\mathrm{z}=\frac{(\cos \theta+\mathrm{i} \sin \theta)^{3}(\sin \theta+\mathrm{i} \cos \theta)}{(\cos 2 \theta-\mathrm{i} \sin 2 \theta)}
$$

in the form $\mathrm{a}+\mathrm{ib}$, where a and b are real numbers
b) Find whether the vectors (1, 2, 3), $(3,4,5)$ and $(5,6,7)$ are linearly dependent or linearly independent.
c) If $y=x^{x}$, find the value of

$$
\frac{d^{2 y}}{d x^{2}}-\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}-\frac{y}{x}
$$

d) Discuss the continuity of the function $\mathrm{f}(x)$ at $x=0$, where

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\frac{|x|}{x}, \mathrm{x} \neq 0 \\
& =1, \quad x=0 .
\end{aligned}
$$

e) Evaluate the integral $\int \frac{d x}{x\left(1-x^{1 / 4}\right)}$
f) For finding the shape of the hyperbola, trace the equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
g) Find $\lim _{x \rightarrow 0} \frac{4^{x}-5^{x}}{x}$
2.
a) Find the value of the determinant $\left|\begin{array}{ccc}2 & \omega & \omega^{2} \\ \omega & \omega^{2} & 2 \\ \omega \omega^{2} & 2 & \omega\end{array}\right|$ where ω is the cube root of unity.
b) If any three successive coefficients in the expansion of $(1+x)^{n}$ are 36,84 and 126 , find n .
c) Find the rank of the matrix $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ 1 & 2 & -1 \\ -1 & -2 & 6\end{array}\right]$.
3.
a) Find $\operatorname{Lim}_{x \rightarrow 2}\left[\frac{x-1}{x-2}-\frac{1}{\ln (x-1)}\right]$
b) Evaluate the definite integral $\int_{0}^{\pi / 2}[\sqrt{\tan x}+\sqrt{\cot x}] d x$
c) Discuss the convergence of the infinite series $\sum_{n=1}^{\infty} \frac{3 n}{4(n+1)}$
(6+6+6)
4.
a) Obtain the Taylor polynomial approximation of degree 4 to the function $f(x)=x \sin x$, about the point $x=0$.
b) If $f(x)=\left\{\begin{array}{cc}x+2 & x<1 \\ 4 x-1 & , 1 \leq x \leq 3 \\ x^{2}+5 & x>3\end{array}\right.$, examine whether $\lim _{x \rightarrow 1} f(x)$ and $\lim _{x \rightarrow 3} f(x)$ exist:
c) Let $g(x)$ and $h(x)$ be two differentiable functions such that $h^{\prime}(x)=-g(x)$ and $g^{\prime}(x)=h(x)$ for all $x, \alpha \leq x \leq \beta$. If $f(x)=[g(x)]^{2}+[h(x)]^{2}$, then find $f(\alpha)$ given that $f(\beta)=2$.
(6+6+6)
5.
a) Find all the eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.
b) Find the equation of the straight line passing through the point ($-2,-3$) and inclined at 60° to the line $x+\sqrt{3} y=2$.
c) Find the equations of the tangents to the ellipse $x^{2}+9 y^{2}-6 x+18 y-18=0$ which are parallel to the line $x+y+1=0$.
$(6+6+6)$
6.
a) Find the equation of the normal at a point on the parabola $y^{2}=2 x$, whose ordinate is 4 .
b) Determine whether the following system of equations have a solution. If it has, then find the solution.

$$
\begin{gathered}
2 x_{1}+3 x_{2}-5 x_{3}=-1 \\
6 x_{1}-x_{2}+3 x_{3}=5 \\
10 x_{1}-5 x_{2}+11 x_{3}=11
\end{gathered}
$$

c) Find the value of a so that the area bounded by the curves $y=x^{2}-a^{2}$ and $y=a^{2}-x^{2}$ is 72 units.
$(6+6+6)$
7.
a) Students in a college prepare a poster for display. The poster is to contain 200 square inches of printed matter, with margins of 4 inches at top and bottom, and of 2 inches on each side. Find the dimensions of the poster if the total area is to be minimum.
b) Let $\vec{a}=\mathrm{i}+\mathrm{j}-2 \mathrm{k}, \vec{b}=2 \mathrm{i}+\mathrm{j}+\mathrm{k}$ and $\vec{c}=4 \mathrm{i}+\mathrm{j}-2 \mathrm{k}$. Find a vector \vec{d} such that $\vec{d} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{d} \cdot \vec{a}=0$.
c) How will you find out if the point $(\alpha \beta)$ is outside, on or inside the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$?

Hence, show that the triangle whose vertices are (1, 2), (3, -1) and ($-2,1$) lies wholly inside the ellipse $\mathrm{x}^{2}+2 \mathrm{y}^{2}=13$.

