B3.2-R3: BASIC MATHEMATICS

NOTE:

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours

Total Marks: 100
1.
a) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$, find $C=A^{\top} B^{\top}$ and its determinant.
b) For what values of p are
$\vec{A}=p \widehat{i}-2 \widehat{j}+\widehat{k}$ and $\vec{B}=2 p \hat{i}+p \widehat{j}-4 \widehat{k}$ perpendicular?
c) Determine the square root of $(3+4 i), \quad i=\sqrt{-1}$.
d) Using 'Ratio Test' for the convergence of an infinite series, examine the convergence of the series
$\frac{1}{2}+\frac{1}{2.2^{2}}+\frac{1}{3.2^{3}}+\frac{1}{4.2^{4}}+\ldots$
e) Evaluate $\int_{-1}^{2}\left(x+x^{2}\right) d x$.
f) Test the differentiability of the function

$$
f(x)=\left\{\begin{array}{lll}
x^{2} & , & x \leq 1 \\
\sqrt{x} & , & x>1
\end{array}\right.
$$

at $\mathrm{x}=1$.
g) Find the center and radius of the circle
$2 x^{2}+2 y^{2}+5 x+7 y-3=0$
2.
a) Reduce the matrix

$$
\left(\begin{array}{cccc}
1 & 3 & 6 & -1 \\
1 & 4 & 5 & 1 \\
1 & 5 & 4 & 3
\end{array}\right)
$$

to normal form and hence find its rank.
b) Examine the consistency of the following system of equations:

$$
\begin{aligned}
& 2 x-5 y+7 z=6 \\
& 3 x-8 y+11 z=11 \\
& x-3 y+4 z=3
\end{aligned}
$$

c) Find the asymptotes of the curve

$$
\begin{equation*}
y^{3}+x^{2} y+2 x y^{2}-y+1=0 \tag{6+6+6}
\end{equation*}
$$

3.

a) Find $\frac{d y}{d x}$, if $\mathrm{x}^{\mathrm{y}} \cdot \mathrm{y}^{\mathrm{x}}=\mathrm{k}$, where k is constant.
b) Find the limit

$$
\lim _{x \rightarrow 0}\left(e^{x}+x\right)^{1 / x}
$$

c) Find the maximum possible area of a right angled triangle whose hypotenuse is 5 cm long.
4.
a) Is the following series convergent?

$$
\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\ldots
$$

b) Evaluate the integral

$$
\int_{0}^{4}|x-2| d x
$$

c) Put the equation

$$
4 x^{2}+9 y^{2}=36
$$

in the standard form and sketch it. Indicate its center, vertex and foci.
5.
a) If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$, then verify that
$A^{2}-7 A-2 I=0$. Also find A^{-1}.
b) Find the value of the determinant

$$
\mathrm{D}=\left|\begin{array}{ccc}
x+a & b & c \\
a & x+b & c \\
a & b & x+c
\end{array}\right| .
$$

Compute $\left.\frac{d D}{d x}\right|_{x=1}$.
c) Evaluate

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

6.

a) Let α and β be the complex roots of unity, find the value of $(1-\alpha)(1-\beta)\left(1-\beta^{2}\right)\left(1-\beta^{4}\right)$
b) Find the projection of the vector

$$
2 \hat{i}+\hat{j}+6 \hat{k} \text { on the vector } \hat{i}+2 \hat{j}+2 \hat{k} .
$$

c) Find the equations of tangent and normal to the curve
$y(x-2)(x-3)-x+7=0$
at the point where the curve meets the x-axis.
7.
a) Show that $(\log x) / x$ has a maximum value at $x=e$. Compute the maximum value.
b) If 2θ is the angle between two unit vectors \vec{a} and \vec{b}, then show that $|\vec{a}-\vec{b}|=2 \sin \theta$.
c) Representing the area by integral, find the area of the region bounded by the lines $x=4, y=1$ and $x+4 y=4$.

