(EM-8)

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. all Sem-I Examination December 08/January 09 Maths-I (110008)

DATE: 22-12-2008, Monday TIME: 12.00 to 3.00 p.m. MAX. MARKS: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

$$\mathbf{Q.1}(\mathbf{a})$$
 (i) Let the function f be defined by

02

02

$$f(x) = \begin{cases} |x|/x & ; x > -2, x \neq 0 \\ x+1 & ; x < -2 \\ 3 & ; x = -2 \end{cases}$$

Evaluate each of the following limits if it exists.

$$\lim_{x \to -2} f(x)$$
, $\lim_{x \to 0} f(x)$, $\lim_{x \to 2/5} f(x)$.

- (ii) Explain various types of discontinuities with an example.
- **(b)** (i) Uing L'Hospital rule, evaluate $\lim_{x\to 0} \frac{1}{x} (1 x \cot x)$.
 - (ii) State Sandwich theorem on sequences and using it show that, if $x \in \mathbb{R}$ with |x| < 1, then $x^n \to 0$ as $n \to \infty$.
- (c) (i) Using mean value theorem, show that $3 + \frac{1}{28} < \sqrt[3]{28} < 3 + \frac{1}{27}$.

(ii) Prove that
$$\tan^{-1} \left[\frac{x(3-4x^2)}{\sqrt{1-x^2}(1-4x^2)} \right] = 3\left(x + \frac{x^3}{6} + \frac{3x^5}{40} + \dots \right).$$
 03

Q.2(a) Attempt any two of the following.

- 04
- (i) For f(x) = x + 2, $x \in [0,5]$, find U(f,P) and L(f,P) for $P = \{0,1,2,3,4,5\}$.
- (ii) State Fundamental theorem of Integral calculus and give one example on which it is not applicable.
- (iii) Evaluate the improper integral $\int_{0}^{\infty} \frac{1}{x^2} dx$.
- **(b)** Evaluate $\int_{3}^{7} \sqrt[4]{(x-3)(7-x)} dx$ using the concept of Gamma and Beta function. **04**
- (c) (i) Test the convergence and divergence of the following series (any two). 04

[A]
$$\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{1}{n^2 + n + 1} \right)$$
 [B] $5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \dots$ [C] $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{5 + n^5}$.

Q.3(a) Suppose that u = f(x, y, z) and $x = g_1(t)$, $y = g_2(t)$, $z = g_3(t)$. Then write the chain rule for derivative of u w.r.t. t. Express $\partial w/\partial r$ and $\partial w/\partial s$ in terms of r and s if $w = x + 2y + z^2$, x = r/s, $y = r^2 + \log(s)$, z = 2r. 05 **(b)** (i) Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + v^2}$. 02 (ii) Find the absolute maximum and minimum values of $f(x, y) = 2 + 2x + 2y - x^2 - y^2$ on the triangular plate in the first quadrant bounded by the lines x = 0, y = 0, y = 9 - x. 03 (c) Find the length of the arc of the curve $x = a \cos\theta$ and $y = a \sin\theta$; a > 0. 04 Q.3(a) State Euler's theorem on homogeneous function. Using it show that 05 (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ (ii) $x^2 \frac{\partial^2 u}{\partial y^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2 \sin u \cos 3u$ if $u = \tan^{-1}(x^2 + 2y^2)$. Explain whether we can apply Euler's theorem for the function $u = f(x, y) = \frac{x^2 + y^2 + 1}{x + y}$. **(b)** (i) If u = f(x, y) then what geometrically $\partial u/\partial x$ indicates? 01 (ii) If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and $u = r \sin\theta \cos\phi$, $v = r \sin\theta \sin\phi$, $w = r \cos\theta$. Calculate $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$. 02 (iii) The pressure P at any point (x, y, z) in space is $P = 400 \times y z^2$. Find the highest pressure on the surface of the unit sphere $x^2 + y^2 + z^2 = 1.$ 02 (c) Find the volume generated by revolving the parabola $y^2 = 4 a x$; a > 0about the latus rectum. 04 **Q.4(a)** Evaluate $\iint (x+y) dydx$; R is the region bounded by x=0, x=2,05 y = x, y = x + 2. (b) Find the volume of the solid that lies under the plane 3x + 2y + z = 12and above the rectangle $R = \{ (x, y) \mid 0 \le x \le 1, -2 \le y \le 3 \}.$ 05 (c) For the vector field $\vec{A} = k \vec{i}$ and $\vec{A} = k \vec{r}$. Find $\nabla \cdot \vec{A}$ and $\nabla \times \vec{A}$. Draw the sketch in each case. 04 OR $\int_{0}^{a/\sqrt{2}\sqrt{a^2-x^2}} \int_{x}^{y^2} dA.$

Q.4 (a) Change the order of integration and evaluate

(ii) Evaluate $\iint_{-\infty}^{\infty} (x^2 + y^2) dA$, where dA indicates small area in xy – plane. **02**

05

(b) Find the area common to r = a and $r = 2a\cos\theta$; a > 0. 05 (c) Find the scalar potential function f for $\vec{A} = y^2 \vec{i} + 2xy \vec{j} - z^2 \vec{k}$. 04 **Q.5(a)** Evaluate $\oint_C -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$, where $C = C_1 \cup C_2$ with $C_1: x^2 + y^2 = 1$ and $C_2: x = \pm 2, y = \pm 2$. **05 (b)** Evaluate $\iint 6xydS$, where S is the portion of the plane x + y + z = 1that lies in front of the yz – plane. **05** (c) Trace the curve y = x + (1/x). 04 OR **Q.5** (a) Find the surface area of a sphere of radius a. 05 **(b)** Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$, where $\vec{F}(x, y, z) = -y^2 \vec{i} + x \vec{j} + z^2 \vec{k}$ and C is the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$. (c) Trace the curve $9 \ a \ y^2 = x (x - 3a)^2$, a > 0. 05 04

3