

MCA (Revised)

Term-End Examination December, 2007

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 hours Maximum Marks: 100

Note: Question number 1 is **compulsory**. Attempt any **three** questions from the rest. All algorithms should be written nearer to C/C++ language.

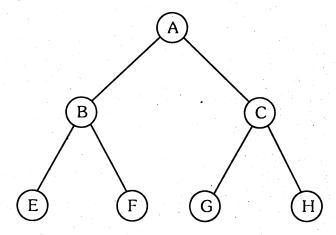
1. (a) Define different types of asymptotic notations used for representing growth function of algorithms. (Define all the five types).

Solve the recurrence equation given below: 5+5=10

$$f(n) = f(n - 1) + f(n - 2)$$

$$f(0) = 0$$

$$f(1) = 1$$


(b) Write the algorithm for HEAP-SORT. Also show functioning of your algorithm on the following array: 6+4=10

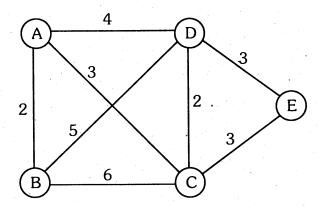
(c) How is dynamic programming different from divide-and-conquer? Consider the problem of chain matrix multiplication. Devise a solution for the above problem using dynamic programming approach and solve it for the following chain of matrices. 2+8=10

$$A_{1_{30\times35}}$$
 . $A_{2_{35\times15}}$. $A_{3_{15\times5}}$. $A_{4_{5\times10}}$. $A_{5_{10\times20}}$

(d) Write Algorithm for Depth First Search (DFS). Trace how DFS traverses (i.e. discover and visits) the graph given below: 5+5=10

2. (a) Explain "TURING THESIS". Show that multiplication function is Turing computable i.e. :

$$f(n, m) = n * m$$


is Turing computable.

3+7=10

(b) (i) Consider the following instance of PCP (Post Correspondence Problem):

		$\Sigma = \{a, b\}$	
	* * . * . *	List $L = (ba, abb, bab)$	
		List $M = (bab, bb, abb)$	
		Does the above PCP have a solution? Explain. (ii) Define NP-Complete and NP-haid problems.	5
		Write steps through which we can prove that a	
		particular problem is NP-Complete.	5
3.	(a)	"Greedy Algorithm always gives an optimal solution." Prove or disprove this statement with proper	
		arguments and examples.	5
	(b)	Find Context Free grammar for the language given below:	
		$L = \{a^n b^m : n, m \ge 0 \text{ and } n \ne m\}.$	5
	(c)	Find Finite Automata that accepts strings on input	
		alphabet $\Sigma = \{a, b\}$ such that the strings of the	
		language contain total no. of 1's divisible by 3 and total no. of 0's divisible by 2.	
		eg: 01110, 1001001111, 111, 00 etc. are accepted.	5
	(d)	Show that Strassen's matrix multiplication is better than a normal matrix multiplication algorithm. (Show	
		by recurrence relation only, don't write Algorithm).	5
1.	(a)	Write QUICK-SORT Algorithm and sort the following array showing the steps of Algorithm.	
		15, 10, 13, 9, 12, 7.	
		Also find the complexity of this algorithm. $3+4+3=$	10
	(b)	(i) Using Prim's Algorithm, find a minimal spanning tree for the graph given below.	5

- (ii) According to CHOMSKY, what are the different types in which grammars are classified? Explain each with an example.
- **5.** (a) Show that clique problem is an NP-complete problem.
 - (b) (i) Explain how Binary Search Algorithm finds an element in an array. Consider the following array:

Find 50 and 77 in the above array. Show steps. Compute the complexity of Binary Search.

(ii) For
$$f(x) = 2x^3 + 3x^2 + 1$$
, show that

(a)
$$f(x) = O(x^n) \text{ for } n \ge 4$$

(b)
$$f(x) \neq O(x^n) \text{ for } n \leq 3$$

5

6

8