Code: A-09/C-03/T-03
Time: 3 Hours

Subject: ANALOG \& DIGITAL ELECTRONICS
Max. Marks: 100

NOTE: There are 11 Questions in all.

- Question 1 is compulsory and carries 16 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Answer any THREE Questions each from Part I and Part II. Each of these questions carries 14 marks.
Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or best alternative in the following:
a. a. The magnitude response $|\mathrm{H}(\mathrm{j} \omega)|$ of a Butterworth filter of order N has maximally flat characteristics because
(A) first N derivatives of $|H(j \omega)|$ are equal to 0 at $\omega=0$.
(B) first N-1derivatives of $|\mathrm{H}(\mathrm{j} \omega)|$ are equal to 0 at $\omega=0$.
(C) (C) first N-1 derivatives of $|\mathrm{H}(\mathrm{j} \omega)|$ are equal to 0 at $\omega=\infty$.
(D) (D) first N derivatives of $|\mathrm{H}(\mathrm{j} \omega)|$ are equal to 0 at $\omega=\infty$.
b. b.

Input impedance of the OpAmp circuit shown in the fig
(A) (A) $\mathrm{R}_{2}+2 \mathrm{R}_{1}$
(B) (B) $\mathrm{R}_{2}+\frac{\mathrm{R}_{1}}{2}$.
(C) (C) $\quad 2 \mathrm{R}_{1}$.
(D) (D) $\frac{\mathrm{R}_{1}}{2}$.

c. Output V_{0} for $V_{i}=1 V_{d c}$ for the circuit shown in the fig. 2 will be
(A) (A) 1.0 V .
(B) (B) -0.5 V .
(C) 0.5 V .
(D) 0.0 V .

d. The Boolean expression $f(A, B, C, D)=\bar{A} C \bar{B}+B C \bar{D}+A \bar{C} D$ can equivalently be written, in terms of its minterms, as
(A) $\sum \mathrm{m}(2,3,6,14,9,13)$.
(B) $\sum \mathrm{m}(3,4,6,14,9,13)$.
(C) (C) $\sum \mathrm{m}(2,3,6,14,8,12)$.
(D) $\sum \mathrm{m}(2,3,5,15,9,13)$.
e. The T-input of a negative edge triggered has been tied to logic 1 . If its clock input is as shown in the fig.3, then ON
(A) (A) 0.2 ms and 1.8 ms .
(B) (B) 1.8 ms and 0.2 ms .
(C) 0.5 ms and 0.5 ms .
(D) 1.0 ms and 1.0 ms .
 tively
f. Immediately after the inputs to a ivaive ko mpinop are smumaneously switched from 00 to 11 , the output Q of the flipflop will
(A) (A) be equal to 0 .
(B) be equal to 1 .
(C) race around.
(D) be unpredictable.
g. The circuit shown in the fig. 4 is a
(A) flipflop.
(B) sequential circuit.
(C) combinational circuit.
(D) parity checker.

h. A MOS differential amplifier has a large gain because
(A) the current through each driver transistor is a constant.
(B) sum of currents through both driver transistors is a constant.
(C) the load is a current source and offers a large resistance.
(D) there is a no feedback in the circuit.

PART I

Answer any THREE Questions. Each question carries 14 marks.
Q. 2 The OpAmp shown in the circuit of fig. 5 has an open loop gain of 10000, input impedance of $1 \mathrm{M} \Omega$ and an output impedance of $1 \mathrm{~K} \Omega$.
(i) Determine $V=V_{+}-V_{-i f} 2.1 \mathrm{~V}$ is applied between terminals A and B.
(ii) Find the gain $\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{i}}}$ of this amplifier.
(iii) Find

Q. 3 Consider the function $H(s)=K \frac{s^{2}-a s+b}{s^{2}+a s+b}$.
(i) Draw its pole-zero diagram.
(2)
(ii) Sketch magnitude and phase responses of this function.
(4)
(iii) For $\mathrm{K}=1$, draw a passive circuit to realize $\mathrm{H}(\mathrm{s})$.
(5)
(iv) Draw a block diagram circuit to realize this function using integrators, summers and multipliers.
Q. 4 Explain the working of a 12-bit dual-slope analog to digital converter using appropriate diagrams and derive the relevant expression for the digital output. If the input voltage is in range $(0 \mathrm{~V}, 10 \mathrm{~V})$ and the counter in the converter is given a clock of 1 MHz , determine
(i) (i) the time taken for output of the integrator to reach its maximum value.
(8)
(ii) (ii) conversion time for input voltage $=5 \mathrm{~V}$, assuming reference voltage of 10 V .
(6)
Q. 5 a. Through proper sketches explain the electron density distribution in the base of a n-p-n Bipolar Junction Transistor when
(i) (i) in Active region
(ii) (ii) in Saturation.

How will the explanation be different for a p-n-p transistor?
(6)
b. The input voltage V switches from +5 V to 10 V in diode circuit shown in the fig. 6 . Sketch the curren ${ }^{\text {ann }}$ waveform.

Q. 6 With short notes on any TWO of the following:
(i) (i) DC level shifting in OpAmps.
(ii) (ii) Sample-and-Hold circuits and their applications.
(iii) (iii) Sensitivity of a single OpAmp Biquad.
(iv) (iv) MOS operational amplifiers.
(14)

PART II

Answer any THREE Questions. Each question carries 14 marks.
Q. 7 a. A portion of TTL gate circuit is shown in the Fig.7(a), where the transistor Q has $\beta=100$. Base-to-emitter voltage of the transistor is equal to 0.7 V when it is in active region and 0.75 V when Q is in saturation. Determine the output voltage V if the current $\mathrm{I}=2.5 \mathrm{~mA}$.
(6)
b. Both NMOS and PMOS transistors in the circuit of Fig.7(b) have a threshold voltage of 2 V and equal characteristic constants. Determine the value of input voltage V_{i} and the range of output voltage for which both transistors will be in saturation.
(8)

Q. 8 a. Determine the Boolean function implemented by the multiplexer circuit shown in the fig. 8 (a).
b. A 3-to-8 decoder has two enable inputs E1 and E2 as shown in fig.8 (b). Write a truth table showing the c

c. With the help of a diagram using Full-adders, explain the working of a 4-bit parallel addition/subtraction of 2 s complement numbers.
(5)
Q. 9 a. Explain the working of a positive-edge-triggered Master-Slave JK flipflop. What are its advantages over a normal JK flipflop? If all NAND gates used in the flipflop have a propagation delay of 5 ns , compute the delay of the Master-Slave.
(6)
b. Design a circuit to generate the sequence 100010 using JK flipflops and logic gates as required.
Q.10a.What is the fun - :-

b. Draw the circuit of a CMOS static RAM cell and explain its operation.
(4)
c. Three negative edge triggered flipflops having inputs $\mathrm{J}_{0} \mathrm{~K}_{0}, \mathrm{~J}_{1} \mathrm{~K}_{1}$ and $\mathrm{J}_{2} \mathrm{~K}_{2}$ respectively, are connected to make a counter such that $\mathrm{J}_{0}=\overline{\mathrm{Q}_{2}}, \mathrm{~K}_{0}=1, \mathrm{~J}_{1}=\mathrm{K}_{1}=1, \mathrm{~J}_{2}=\mathrm{Q}_{1} \mathrm{Q}_{0}$
Starting with $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=000$, what sequence(s) of states will the counter go through?
(6)
Q. 11 Write short notes on any THREE of the following:
(i) (i) Emitter-Coupled OR gate.
(ii) (ii) CMOS logic gates.
(iii) (iii) BJT inverter.
(iv) (iv) Schottky diodes and its applications in digital circuits.
(14)

BACK

