CHEMISTRY

- The effective nuclear charge decreases due to :
 - (a) decrease in the number of intervening electrons
 - (b) increase in the size of the atom
 - (c) decrease in the screening constant
 - (d) less number of valence electrons
- 2. Which quantum number exhibits Zeeman effect?
 - (a) Principal quantum number
 - (b) Azimuthal quantum number
 - (c) Magnetic quantum number
 - (d) Spin quantum number
- 3. In square planar geometry, four square planar dsp^2 hybrids are formed by mixing:
 - (a) s, p_x, p_y and d_{z^2} orbitals
 - (b) s, p_x , p_y and $d_{x^2-y^2}$ orbitals
 - (c) s, p_x , p_y and d_{xy} orbitals
 - (d) s, $p_{x'}$, p_{y} and d_{xz} orbitals
- 4. On the basis of MOT, the ionisation energy of N_2 molecule is higher than that of NO molecule because during ionisation of N_2 molecule, the electron is to be removed from :
 - (a) Antibonding molecular orbital
 - (b) Bonding molecular orbital
 - (c) Non-bonding orbital
 - (d) π bonding orbital

- 5. In the given reaction; $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$; the equivalent weight of iodine will be equal to :
 - (a) Its molecular weight
 - (b) $\frac{1}{2}$ of its molecular weight
 - (c) $\frac{1}{4}$ of its molecular weight
 - (d) Twice its molecular weight
- 6. When KMnO₄ is reduced with oxalic acid in acidic medium, the oxidation number of Mn changes from :
 - (a) 7 to 4
 - (b) 6 to 4
 - (c) 7 to 2
 - (d) 4 to 2
- 7. What is the correct order of the following ions as Bronsted bases?
 - (a) $F^- > OH^- > NH_2^- > CH_3$
 - (b) $CH_3^- < NH_2^- < OH < F^-$
 - (c) $F < NH_2 < CH_3 < OH$
 - (d) CH_3 > NH_2 > OH > F
- 8. Amongst the trihalides of boron, BF₃ has a weak Lewis acid character because:
 - (a) BF₃ is a small molecule
 - (b) BF3 does not exhibit back bonding
 - (c) Effectiveness of $p\pi p\pi$ bonding is maximum in BF₃
 - (d) BF3 molecule shows double bond character

Chem.

9.	Lith	ium nitrate on heating gives	
	(a)	LiO2, NO2 and O2	
	(b)	LiNO ₂ and O ₂	

Li₃N, NO and O₂ (d) Li₂O, N₂ and O₂

10. The hydroxides of which of the following pairs of elements are insoluble in water and amphoteric:

```
(a)
     Ca, Sr
```

(c)

Ba, Sr (b)

(d) Mg, Ca

11. The relative order of basic strength of trihydrides of the elements of group 15 varies as follows:

(a)
$$NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$$

(b)
$$NH_3 > PH_3 < AsH_3 < SbH_3 < BiH_3$$

(e)
$$NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$$

(d)
$$NH_3 < PH_3 > AsH_3 > SbH_3 > BiH_3$$

What would be the value of effective magnetic moment (μ_{eff}) for a complex 12. ion, whose central metal ion has four unpaired electrons in it?

- (a) 4.90 BM
- (b) 5.92 BM
- (c) 3.87 BM
- (d) 2.83 BM

13. Catalytic activity exhibited by transition metals and their compounds is due to:

- (a) Vacant orbitals available in these metals
- Variable oxidation states shown by these metals (b)
- Availability of large surface area on which the reactants may be adsorbed (c)
- All of the above reasons (d)

- 14. The aqueous solution of the salt will be coloured in case of :
 - (a) $\operatorname{Zn}(\operatorname{NO}_3)_2$
 - (b) LiNO_a
 - (c) $Co(NO_3)_2$
 - (d) Ca(NO₃)₂
- 15. One of the characteristic of the transition metals to form the complex ion is:
 - (a) having unpaired electrons in d-sub-shell
 - (b) having paired electrons in d-sub-shell
 - (c) having small charge and size ratio
 - (d) having empty d-orbitals
- 16. What type of isomerism would you assign to the following pair of compounds?

$$\left[(\mathrm{NH_3})_4 \mathrm{Co} \underbrace{(\mathrm{NH_3})_2 \, \mathrm{Cl}_2}_{OH} \right]^{2^*};$$

$$\left[\begin{array}{c|c} \text{Cl(NH}_3)_3\text{Cq} & \text{OH} \\ \text{OH} & \text{Co (NH}_3)_3\text{ Cl} \end{array}\right]^{2^+}$$

- (a) Coordination isomerism
- (b) Coordination position isomerism
- (c) Linkage isomerism
- (d) Ligand isomerism
- 17. The total pairing energy for [Cr(OH₂)₆]²⁺ ion in high spin state is :
 - (a) 0
 - (b) 1P
 - (c) 2P
 - (d) 3P

Chem.

	(b)	Sodium
	(c)	Iron
	(d)	Manganese
19.	The	elements of Group 13 like Boron and Aluminium form:
	(a)	Inorganic organometallic compounds
	(b)	Sigma covalent organometallic compounds
	(c)	Pi-covalent organometallic compounds
	(d)	Sandwich organometallic compounds
20.	In n	netal alkenes, the bond length of C=C bond in coordinated olefin:
	(a)	remains unchanged
	(b)	decreases
	(c)	increases
	(d)	depends on the nature olefins coordinated to the metal
21.	The	reactive intermediate which displays trigonal planar geometry is :
	(a)	Carbocation
	(b)	Carbanion
	(c)	Carbene
	(d)	Benzyne
22.	The	stereoisomer which exhibits different physical and chemical properties
	on	reaction with both chiral and achiral reagents is:
	(a)	A pair of enantiomers
	(b)	Meso compounds
	(c)	A pair of diastereoisomers
	(d)	An enantiomer and its racemic form
Chen	a.	5 P.T.O.

Which one of the following is the bulk structural and essential element?

18.

(a)

Carbon

Chem	•	. 6		
	(d)	Neighbouring group participation		
	(c)	S _N ' mechanism		
	(b)	S_N^{-2} mechanism		
		S_N^{-1} mechanism		
		ominantly (R)-2-chlorobutane. The reaction proceeds through:		
26.	Trea	tment of optically pure (R)-2-butanol with thionyl chloride gives		
	(d)	(CH ₃) ₂ CHBr		
	(c)	$(CH_3)_3C-B_T$		
	(b)	CH ₃ CH ₂ Br		
	(a)	CH ₃ Br		
		eaction (Hydrolysis) in 80% water and 20% ethanol at 25°C is:		
25.	The	alkyl bromide which will display the slowest rate of nucleophilic substitution		
	(d)	2, bromobutane		
	(c)	1, bromobutane		
	(b)	2, bromopropane		
	(a)	1, bromopropane		
		base catalysed dehydrobromination of which of the following compounds ld be governed by Saytzef's rule:		
24.		2, 4 dibromopentane		
	(c) (d)	2, 3 dibromopentane		
	(b)	3, 3, dibromobutane		
	(a)	2, 3, dibromobutane		
23.		ch amongst the following compounds will exhibit Meso form ?		
		21		

- 27. The acid catalysed condensation between a carbonyl compound and a secondary amine leads to formation of:
 - (a) an enamine
 - (b) an imine
 - (c) an aminol
 - (d) a hydrazone
- 28. The product that would be formed when benzaldehyde is treated with formaldehyde in 50% NaOH is ;
 - (a) $C_6H_5CH_2OH$ and $C_6H_5COO^-Na^+$
 - (b) C₆H₅CH₂OH and HCOO Na⁺
 - (c) C₆H₅COO Na and CH₂OH
 - (d) C₆H₅CH₂OH and HCOOH
- 29. The compound which will undergo Pinacol-Pinacolone rearrangement is :
 - (a) 1, 2, ethanediol
 - (b) 1, 2, 3, propanediol
 - (c) 2, methyl, 2, 3, butanediol
 - (d) 2, 3, dimethyl, 2, 3, butanediol
- 30. The reaction between the following sequence chemical compounds which will lead to the formation of Mannich bases through Mannich reaction is:
 - (a) CH₃COCH₃ + CH₂O + NH₃
 - (b) $C_6H_5COCH_3 + CH_3CHO + CH_3NH_2$
 - (c) $C_6H_5COCH_3 + HCHO + HN(CH_3)_9$
 - (d) $C_6H_5COC_6H_5 + HCHO + HN(C_2H_6)_2$

31. Which of the following ketones can not be prepared starting from acetoacetic ester?

$$\begin{array}{ccc} & & & O \\ \parallel & & \parallel \\ \text{(a)} & & \text{CH}_3\text{-C-CH}_2\text{-CH}_3 \end{array}$$

(b)
$$CH_3$$
- C - CH - $(CH_9)_2$

(c)
$$CH_3$$
- C - CH CH_3 C_2H_5

(d)
$$CH_3-CH_2-\ddot{C}-CH_2-CH_3$$

32. Which of the following amines upon interaction with a proton, would give rise to strongest conjugate acid?

- (a) $(CH_3)_3\ddot{N}$
- (b) (CH₃)₂NH
- (c) $C_6H_5-\ddot{N}H_2$
- (d) CH₃NH₂

33. The correct increasing order of basicity of following different amines is :

- (a) Pyrrole < Pyridine < Piperidine
- (b) Pyrrole < Piperidine < Pyridine
- (c) Pyridine < Pyrrole < Piperidine
- (d) Piperidine < Pyridine < Pyrrole

34. The product that is obtained due to reaction between pyrrole and methyl magnesium bromide is:

- (a) N-Methylpyrrole
- (b) 2-Methylpyrrole
- (c) Pyrrole magnesium iodide and Methane
- (d) 3-Methyl pyrrole

Chem.

- 35. The ultraviolet spectrum of a simple carbonyl compound shows two peaks at 280 nm and 190 nm. These could be attributed respectively to:
 - (a) $\pi \to \pi^*$ and $n \to \pi^*$ transitions
 - (b) $n \to \pi^*$ and $\pi \to \pi^*$ transitions
 - (c) $\sigma \to \pi^*$ and $\pi \to \sigma^*$ transitions
 - (d) $n \to \sigma^*$ and $\pi \to \pi^*$ transitions
- 36. An organic compound displays a strong carbonyl group absorption in the infrared spectrum at 1750 cm⁻¹ due to the presence of :
 - (a) Ester carbonyl group
 - (b) Amide carbonyl group
 - (c) Acid carbonyl group
 - (d) Aldehydic carbonyl group
- 37. In the NMR spectra, which of the following underlined protons would be most highly deshielded:
 - (a) CH,CH,OH

O

- (b) $CH_3-C-\underline{H}$
- (c) $C_6H_5-CH_3$
- (d) $CH_3CH_2 Br$
- 38. Which of the following amino acids can not participate in H-bonding involved in the α -helix structure of proteins?
 - (a) Glycine
 - (b) Proline
 - (c) Leucine
 - (d) Histidine

39.	The invert sugar is chemically composed of:
	(a) 100% D-Glucose
	(b) 100% D-Fructose
	(c) 50:50 Mixture of Glucose and Fructose
	(d) 100% Sucrose only
40.	Which amongst the following compounds on reaction with a Grignard reagent
	will not yield an alcohol?
	(a) Formaldehyde
	(b) Acetone
	(c) Acetic acid
	(d) Acetaldehyde
41.	The differential and integral of which of the functions is equal to the function
	itself:
	(a) $\sin x$
	(b) $\log (x)$
	(c) $\exp(x)$
	(d) k x.
42.	The binary equivalent of the chemical number 11 is :
	(a) 1010
	(b) 1011
	(c) 1100
12	(d) 1001
43.	If V is the actual volume of a gas molecule, its effective volume is :
74	(a) 4 V
2	(b) 2 V
	(c) V
	(d) 8 V
Chem	10

.

- 44. At a pressure P the collision frequency and mean free path of molecules in a gas are n and l. If the pressure is reduced to p/3, keeping the temperature constant, the new values of n and l will be:
 - (a) 3n, 3l
 - (b) $3n, \frac{l}{3}$
 - (c) $\frac{n}{3}$, *l*.
 - (d) $\frac{n}{3}$, 3l
- 45. Liquid crystals can be distinguished by the arrangement of molecules in the liquid. Which of the liquid phases shows a stacked helical structure:
 - (a) Nematic
 - (b) Smectic
 - (c) Cholesteric
 - (d) Both (a) and (b)
- 46. The Miller index of a diagonal plane that divides a cubic unit cell into two equal prisms is:
 - (a) 101
 - (b) 111
 - (c) 100
 - (d) 210
- 47. The slope of the plot of lnk vs $\frac{1}{T}$ of decomposition of acetaldehyde was found to be $-2.27 \times 10^4 K$. What is the approximate activation energy of the reaction?
 - (a) 190 kJ/mol
 - (b) 380 kJ/mol
 - (c) 100 kJ/mol
 - (d) 95 kJ/mol

48.	Two moles of an ideal gas are heated at constant volume from 100°C to 200°C.
	The change in its internal energy will be:
	(a) 100 R
	(b) 200 R
	(c) 150 R
S.	
40	(d) 300 R
49.	
	(a) isobaric
	(b) isochoric
	(c) isenthalpic
50	(d) isentropic
50.	A Carnot engine with an efficiency of 80% is operating between a sink and a source at 150°. The temperature of the sink is:
353	(a) 100°C
	(a) 100 C (b) 80°C
	(e) 50°C
	(d) 30°C
51	N-2009-1 00-04/00/00/0
•	temperature and pressure. The accompanying entropy change is :
	(a) Zero
	(b) 16 JK ⁻¹
	(e) 10 JK ⁻¹
	(d) 30 JK ⁻¹
52	Which of the following thermodynamic functions represents the arrow of the
	time ?
	(a) H
	(b) A
	(c) S
	(d) G
	potentific.
C	nem 12

53. The equilibrium constant of the read	53.	reaction
--	-----	----------

$$\operatorname{cis} C_2H_2Cl_2 \rightleftharpoons \operatorname{trans} C_2H_2Cl_2$$

is 0.608 at 500 K. Equilibrium constant of the reverse reaction would be :

- (a) 1.64
- (b) 0.392
- (c) 3.98
- (d) 0.608

54. Absolute alcohol cannot be obtained by fractional distillation of industrial alcohol because:

- (a) Alcohol and water are completely miscible
- (b) Alcohol forms hydrogen bonds with water
- (c) Alcohol and water forms an azeotropic mixture
- (d) None of the above

55. The solubility product of a sparingly soluble salt in water is 4×10^{-12} dm⁹ mol⁻³. Its solubility at the given temperature is :

- (a) $4 \times 10^{-12} \text{ mol/dm}^3$
- (b) $2 \times 10^{-6} \text{ mol/dm}^3$
- (c) $1 \times 10^{-4} \text{ mol/dm}^3$
- (d) $1.58 \times 10^{-4} \text{ mol/dm}^3$

56. The electrode potential of the half cell

is:

(a)
$$\frac{2.3 \text{ RT}}{\text{F}}$$

(b)
$$-\frac{2.3 \text{ RT}}{\text{F}}$$

(c)
$$\frac{RT}{F}$$

(d)
$$-\frac{\mathbf{RT}}{\mathbf{F}}$$

57 .	A qu	antum mechanical operator must be :
	(a)	Hamiltonian
	(b)	Commutative
	(c)	Hermitian
	(d)	All of the above
58.	Whic	h of the following molecules will not give rotational spectrum?
	(a)	CO ₂
	(b)	HCI
	(c)	H_2O
	(d)	NO
59.	The a	absorbance A and the transmittance T of light in a medium are related
	as:	
	(a)	A = 1 - T
	(b)	$A = -\log T$
	(c)	$A = \log T$
	(d)	$T = -\log A$
60.	The i	freezing point of a solution of NaNO ₃ prepared by dissolving 2.83 g in
	100	g of water is:
	(a)	-0.52°C
	(b)	−1.0°C
	(c)	-1.24°C
	(d)	-2.0°C
Chem		14