MCA (Revised)

Term-End Examination

June, 2007

MCS-013 (${ }^{\text {S }: ~ D I S C R E T E ~ M A T H E M A T I C S ~}$

Time : 2 hours
Maximum Marks : 50

Note : Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) In the following statement, identify the simple propositions $\mathrm{p}, \mathrm{q}, \mathrm{r}$ etc. that are combined to make it.
'If Sun rises in the West or 15 is a prime, 1997 is a leap year.'

Write the statement in symbols and give the truth value. Write the negation in words.
(b) Differentiate between tautology, absurdity i.e. contradiction and contingency, with suitable example.3
(c) Draw the logic circuit for the boolean expression $\left(x_{1} \wedge\left(x_{2}^{\prime} \vee x_{3}\right)\right) \vee\left(x_{2}^{\prime} \wedge x_{3}^{\prime}\right)$3
(d) Let $A=\{1,2,3,4,5\}$. Let R be a relation on A such that $x R y$ if $x \leq y$. Write R and make relation matrix. Check for symmetry, reflexivity and transitivity.
(e) Under the IPv4 protocol, the 32 -bit Class A IP address of a computer in a network has the following specifications :
(i) Leftmost bit is 0 .
(ii) The next 7 bits is the net-id and this cannot be 1111111.
(iii) The next 24 bits form the host-id and host-ids consisting of all 1's and all 0's are not allowed.

What is the maximum number of Class A addresses possible under the IPv4 protocol?
(f) Write all partitions of 7. Also find P_{7}^{3} and P_{7}^{2}. 3
(g) There are 20 students in a class and 5 different grades are available. In how many ways can these grades be awarded ?
2. (a) Check if $\left(p \wedge q^{\prime}\right) \vee\left(p^{\prime} \wedge q\right) \leftrightarrow p \oplus q$ is a tautology
using a truth table.
(b) Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$. Check that f is a bijective function. Find f^{-1}.
3. (a) Prove by induction that $2^{\mathrm{n}}>\mathrm{n}^{2}, \forall \mathrm{n} \geq 5$.

4
(b) Anita collects stamps. In a box she has 4 stamps of England, 3 stamps of France and 3 stamps of Germany. In how many ways can she take out 7 stamps from the box if
(i) the order is not important.
(ii) the order is important.
4. (a) Make a table of values for the function $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{2}^{\prime} \wedge x_{3}\right)^{\prime}$. Find a boolean expression in CNF or DNF, whichever is simpler.
(b) Two players A and B roll a dice with player A rolling the dice first. What is the probability that A gets at least 2 more than the number B gets ?
(c) Define pigeonhole principle with example.
5. (a) Give direct proof to prove $\frac{\mathrm{p}}{\mathrm{q}}=\sqrt{2}$ is not a rational number.
(b) Among the candidates who applied for the job of interpreter, 15 knew French, 12 knew German, 8 knew Mandarin, 7 knew both French and German, 5 knew both French and Mandarin, 6 knew both German and Mandarin and 3 knew all the three languages.
(i) How many candidates applied for the job ?
(ii) How many candidates knew at least two languages?

