M.Sc., MATHEMATICS (PREVIOUS)

PAPER I - ALGEBRA

Answer any **THREE** questions All questions carry equal marks

- a) If a permutation is a product of s transpositions and also a product of t transpositions, show that both s and t are even or odd.
 - Express the following as the product of disjoint cycles.
 i) (1,2,3) (4,5) (1,6,7,8,9) (1,5)
 ii) ((1,2) (1,2,3) (1,2)
- a) If O(G) = p² and p is a prime number, show that G is abelian.
 - b) If G is finite group and if a prime number p divides O(G), then show that G has an element of order p.
- a) Define an integral domain and show that a finite integral domain is a field.
 - b) State and prove the fundamental theorem of homomorphism for rings.
- a) Define a maximal ideal in a ring. Determine all maximal ideals in the ring (Z,+,.) of integers.
 - Show that every integral domain can be imbedded in a field.
- a) Define a Euclidean ring. Show that every ideal in a Euclidean ring is principal ideal.
 - b) Show that every pair of elements in a Euclidean ring have a greatest common divisor.
- 6. a) Find all units in J[i].

- b) If p is a prime number of the form 4n+1, show that $p = a^2 + b^2$ for some integers a and b.
- a) Show that the polynomial ring, over a field F is a Euclidean ring.
 - b) State and prove Gauss lemma for primitive polynomials.
- 8. a) Prove the following:
 - i) If v₁, v₂,..., v_n in a vector space V over a field F are linearly independent over F, then show that every element in their linear span has a unique representation of the form λ₁v + λ₂v₂ + + λ_nv_n, with λ_{i∈F}
 - ii) If v₁,v₂,...,v_n are in V, show that either they are linearly independent or some v_R is a linear combination of v₁,v₂,...,v_{R-1}s
 - b) If V is finite dimensional and T is an isomorphism of V into V, prove that T must map V onto V.
- 9. a) If V is finite-dimensional over F then T∈ A(V) is invertible if and only if the constant term of the minimal polynomial of T is not O.
 - b) Define the rank r(T) of a linear transformation T on a finite dimensional vector space V over F. Show that
 - i) $r(ST) \le r(T)$, $r(TS) \le r(T)$ and ii) r(ST) = r(TS) = r(T) for some regular S in A(V)
- 10. a) If A∈F is a characteristic roof of T∈A(V), show that for any polynomial q(x)∈F[x], q(λ) is a characteristic root of q(T).
 - b) If λ₁,λ₂,....,λ_k is F are distinct characteristic roots of T∈ A(V) and if v₁,v₂,....,v_k are characteristic vectors of T belonging to λ₁,λ₂,....,λ_k respectively, show that v₁,v₂,....,v_k are linearly independent.

M.Sc., MATHEMATICS (PREVIOUS)

PAPER II – REAL ANALYSIS

Answer any **THREE** questions All questions carry equal marks

- 1. a) Show that every k-cell is compact.
 - b) Prove that every closed subset of a compact set is compact.
- a) Let f be a continuous mapping of a compact metric space x into a metric space y. Then prove that f is uniformly continuous on x.
 - b) Let f be a function defined on R' by $f(x) = \begin{cases} 0 & (x \text{ is irrational}) \\ 1/n & (x = m/n) \end{cases}$ then prove that f is continuous at every irrational point and that f has a simple discontinuity at every rational
- 3. a) Let f be defined by $f(x) = \begin{cases} x^2 & Sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$.

Then show that f is differentiable at all points x. Verify the continuity of f^{i} i.e. $f^{i}(0)$ exists or not

b) State and prove Taylor's theorem.

point.

- 4. a) If \overline{f} maps on [a,b] in to R^K and if $|\overline{f}| \in R(\alpha)$ for some monotonically increasing function α on [a,b] then prove that $|\overline{f}| \in R(\alpha)$ and $|\int_a^b \overline{f}| d\alpha \leq \int_a^b |\overline{f}| d\alpha$.
 - b) State and prove fundamental theorem of calculus.
- a) State and prove Cauchy criterion for uniform convergence of functions.

- b) Suppose k is compact and
 - i) $\{f_n\}$ is a sequence of continuous functions on k.
 - ii) $\{f_n\}$ converges point wise to a continuous function f on k.
 - iii) $f_n(x) \ge f_{n+1}(x) \quad \forall x \in K, n = 1, 2 \dots$ then prove that $f_n \to f$ uniformly on k.
- 6. a) Let α be monotonically increasing on [a, b]. Suppose f_n ∈ R(α) on [a, b] for n=1, 2 and suppose f_n → f uniformly on [a, b]. Then show that f∈ R(α) on [a, b] and ∫_n f dα = lim ∫_{n→∞} f_n dα.
 - b) Prove that there exists a real continuous function on the real line which is nowhere differentiable.
- Define finite μ-measurable f_n. Show that m(μ) is a σ-ring and μ* is countably additive on m(μ).
- a) Define a measurable function. Show that if f is measurable then | f | is measurable.
 - b) Let $\{f_n\}$ be a sequence of measurable functions. For $x \in X$ put $g(x) = \sup f_n(x)$ (n = 1, 2, ...), $h(x) = \lim_{n \to \infty} \sup f_n(x)$. Then show that g and h are measurable.
- 9. a) If $f \in \mathcal{L}(\mu)$ on E then prove that $|f| \in \mathcal{L}(\mu)$ on E and $\left| \int_{E} f \ d\mu \right| \leq \int_{E} f \left| d\mu \right|$.
 - b) State and prove Fatou's theorem.
- 10. State and prove Lebesque dominated converging theorem.

M.Sc., MATHEMATICS (PREVIOUS)

PAPER III – DIFFERENTIAL EQUATIONS

Answer any THREE questions All questions carry equal marks

in quiville unit g squar manne

- 1. a) Show that the particular solution to the differential equation (1+x)y' = py, y(0) = 1 is $y = (1+x)^p$.
 - b) Find the power series solution of y'' + y = 0.
- 2. Find power series solution of the Legendre equation $(1-x^2)y'' - 2x y' + p(p+1)y = 0$ where p is constant.
- 3. a) Obtain $J_n(x)$ for the Bessel equation

$$x^2y'' + xy' + (x^2 - p^2)y = 0$$

b) Prove that i)
$$\frac{d}{dx}[x^p J_p(x)] = x^p J_{p-1}(x)$$

ii)
$$\frac{d}{dx} [x^{-p} J_p(x)] = -x^{-p} J_{p+1}(x)$$

- 4. a) Obtain the Orthogonality properties of Bessel equation.
 - b) Express $J_2(x)$ and $J_3(x)$ in terms of $J_0(x)$ and $J_1(x)$.
- 5. State and prove Picard's theorem.
- 6. Let f(x,y) be a continuous function that satisfies a Lipschitz condition $|f(x,y_1)-f(x,y_2)| \le K|y_1-y_2|$ on a strip defined by $a \le x \le b$ and $-\infty < y < \infty$. If (x_0, y_0) is any point of the strip then prove that the I.V.P y' = f(x, y), $y(x_0) = y_0$ has one and only one solution y = y(x) on the interval $a \le x \le b$.

- 7. a) If u is a function of x, y and z which satisfies the partial differential equation $(y-z)\frac{\partial u}{\partial x} + (z-x)\frac{\partial u}{\partial y} + (x-y)\frac{\partial u}{\partial z} = 0$. Show that u contains x, y and z only in combinations x+y+z and $x^2+y^2+z^2$.
 - b) Find the surface which intersects the surfaces of the system z(x+y)=c(3z+1) orthogonally and which passes through the circle $x^2+y^2=1$, z=1.
- a) Find the characteristics of the equation pq=z and determine the integral surface which passes through the parabola x=0, y²=z
 - b) Find the complete integral of the equation p²x+q²y=z by charpits method.
- a) Find a particular integral of the equation (D²-D^f)z=e^{x+y}.
 - b) Solve the equation $\frac{\partial^3 z}{\partial x^3} 2 \frac{\partial^3 z}{\partial x^2 \partial y} \frac{\partial^3 z}{\partial x \partial y^2} + 2 \frac{\partial^3 z}{\partial y^3} = e^{x+y}$
- Reduce the equation

$$y^2 \cdot \frac{\partial^2 z}{\partial x^2} - 2xy \frac{\partial^2 z}{\partial x \partial y} + x^2 \cdot \frac{\partial^2 z}{\partial y^2} = \frac{y^2}{x} \frac{\partial z}{\partial x} + \frac{x^2}{y} \frac{\partial z}{\partial y}$$
 to canonical

form and hence solve it.

M.Sc., MATHEMATICS (PREVIOUS)

PAPER IV - LINEAR PROGRAMMING

Answer any **THREE** questions All questions carry equal marks

- a) Explain the origin and development of operations Research in brief.
 - b) Detail the various steps involved in mathematical formulation of the problem.
- a) Solve the following LPP graphically.

Minimize
$$Z = 3x_1 + 5x_2$$

subject to $x_1 - x_2 \le I$

$$x_1 + x_2 \ge 3$$
 and $x_1 + x_2 \ge 0$

- b) Show that every extreme point of the set of all feasible solutions of all LPP is a basic feasible solution.
- a) State and prove fundamental theorem of Linear Programming problem.
 - b) Solve the following LPP by using Big M-method.

Maximize
$$Z = x_1 + 2x_2 + 3x_3 - x_4$$

subject to $x_1 + 2x_2 + 3x_3 = 15$

$$2x_1 + x_2 + 5x_3 = 20
x_1 + 2x_2 + x_3 + x_4 = 10$$

$$x_1, x_2, x_3, x_4 \ge 0$$

4. Use Two-phase Simplex method to

Maximize
$$Z = 5x_1 - 4x_2 + 3x_3$$

Subject to the constraints:

$$2x_1 + x_2 - 6x_3 = 20$$
$$6x_1 + 5x_2 + 10 \ x_3 \le 76$$

$$8x_1 + 3x_2 + 6x_3 \le 50$$

$$x_1, x_2, x_3 \ge 0$$

b) What is degeneracy? How you will resolve it?

 a) Define standard primal problem and also give various steps involved in the formulation of a primedual pair.
 b) Using the dual, solve the following LPP:

Maximize
$$Z = 3x_1 - 2x_2$$

subject to $x_1 \le 4$
 $x_2 \le 6$
 $x_1 + x_2 \le 5$
 $-x_2 \le -1$
 $x_1, x_2 \ge 0$

6. a) State and prove complementary slackness theorem.

b)Obtain dual for the following LPP:

Maximize
$$Z = 2 x_1 + 5x_2 + 6x_3$$

subject to $5x_1 + 6x_2 - x_3 \le 3$
 $-2x_1 + x_2 + 4x_3 \le 4$
 $x_1 - 5x_2 + 3x_3 \le 1$
 $-3x_1 - 3x_2 + 7x_3 \le 0$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

a) Write dual simplex algorithm to solve the given LPP.
 b) Use dual simplex method to solve the LPP given below:

Maximize
$$Z = x_1 + x_2$$

subject to $2x_1 + x_2 \ge 4$
 $x_1 + 7x_2 \ge 7$
 $x_1, x_2 \ge 0$

8. a) What are the major steps involved in Revised simplex algorithm?

b)Use revised simplex method to solve the following LPP:

Maximize
$$Z = 3x_1 + 2x_2 + 5x_3$$

Subject to the constraints:

$$x_1 + 2x_2 + x_3 \le 430$$

 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_2 \le 420$
 $x_1, x_2, x_3 \ge 0$

- a)Define Loops in transportation tables and give its remarks in detail.
 - b) Find the optimal solution for the following transportation problem by using least-cost method.

	D_l	D_2	D_3	D_4	Capacity
O_I	1	2	3	4	6
O_2	4	3	2	0	8
O_3	0	2	2	1	10
Demand	4	6	8	6	

Where O_i and D_j denote the ith origin and jth destination separately.

- a) Explain unbalanced transportation problem with all necessary details.
 - b) The XYZ company has 5 Jobs I, II, III, IV, V to be done and 5 men A, B, C, D, E to do these jobs. The number of hours each man would take to accomplish each job is given by the following table:

	A	B	C	D	E
1	16	13	17	19	20
II	14	12	13	16	17
III	14	11	12	17	18
IV	5	5	8	8	11
V	5	3	8	8	10

Work out the optimum assignment and the total minimum time taken.

M.Sc., MATHEMATICS (PREVIOUS)

PAPER V - TOPOLOGY

Answer any **THREE** questions All questions carry equal marks

- 1. a) Let $X = \{a,b,c,d,e\}$. Test whether $\tau_1 = \{X,\phi,\{a,b,c\},\{a,b,d\},\{a,b,c,d\}\}\$ is a topology on X.
 - b) Prove that is A and B are subsets of a topological space (X,τ) , then $(A \cup B)' = A' \cup B'$.
- a) Prove that any class A of subsets of a nonempty X is the sub base for a unique topology on X.
 - b) Show that every second countable space is also first countable.
- a) Define a compact topological space. Show that continuous images of compact sets are compact.
 - Show that every closed subset of a compact space is also compact,
- 4. a) Prove that every compact Hausdorff space is normal.
 - b) If A is a compact subset of a Hausdorff space X and $p \notin A$ then there is an open set G such that $p \in G \subset A^C$.
- 5. a) Show that a complete regular space is also regular.
 - b) Prove that every second countable normal T₁-space is metrizable.
- a) Show that a finite subset of T₁-space X has no accumulation points.

- b) Let F₁ and F₂ be disprint closed subsets of a normal space X. Then show that there exists a continuous function f: X → [0,1] such that f[F₁]=(0) and f[F₂]=1.
- 7. a) Prove that the Euclidian space R" is connected.
 - b) Show that if [A_i] is a class of connected subsets of X such that no two members of it one separated then UA_i is connected.
- 8. a) Prove that the components of a totals disconnected space X are the singleton subset of X.
 - b) Show that a totally disconnected space is Hausdorff.
- 9. a) State and prove Weierstrass approximation theorem.
 - b) Prove that if the components of a compact space are open then there are only a finite number of them.
- 10. Establish the extended Stone-Weierstrass theorem