N.B.(1) Question No. 1 is compulsory.
(2) Attempt any four questions from remaining six questions.

1. (a) Prove that-

$$
\int_{0}^{\infty} x e^{-x^{4}} d x \quad x \int_{0}^{\infty} \frac{e^{-x^{2}}}{\sqrt{x}} d x=\frac{\pi}{4 \sqrt{2}}
$$

(b) Use the rule of D.U.I.S. to prove that-

$$
\begin{aligned}
& \begin{array}{l}
\int_{0}^{\infty} e^{-\left(x^{2}+\frac{a^{2}}{x^{2}}\right)} d x=\frac{\sqrt{\pi}}{2} e^{-2 a} \\
\quad a>0 \\
\text { given } \int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
\end{array} \text { }
\end{aligned}
$$

(c) Solve-

$$
\left(y+\frac{1}{3} y^{3}+\frac{1}{2} x^{2}\right) d x+\frac{1}{4}\left(x+x y^{2}\right) d y=0
$$

(d) Use Taylor's series method to find y at $x=0.2 \mathrm{~g}$

$$
\frac{d y}{d x}=1+y^{2} \text { with } y=0 \text { at } x=0
$$

2. (a) Solve-

$$
\left(D^{3}+D^{2}+D+1\right) y=\sin ^{2} x
$$

(b) Solve-
$\left(D^{2}+2\right) y=e^{x} \cos x+x^{2} e^{3 x}$
(c) Evaluate $\iint_{R} \frac{2 x y^{5}}{\sqrt{1+x^{2} y^{2}-y^{4}}} d x d y$ where R is a triangle whose are $(0,0),(1,1)$ and $(0,1)$.
3. (a) Find the mass of Lamina in the orm of cardioide $r=a(1+\cos \theta)$ if the density at any point varies as it's distand m the pole of cardioide.
(b) Change the order gration

$f(x \cdot y) d x d y$.
(c) Solve using Bu ge-Kutta method of order 4.

$$
\frac{d y}{d x}=\frac{y}{x} \quad x_{0}=1, y_{0}=1, \quad \text { for } x=1.2 \text { with } h=0.1
$$

4. (a) Prove that-

$$
\int_{0}^{1} \frac{x^{3}-2 x^{4}+x^{5}}{(1+x)^{7}} d x=\frac{1}{960}
$$

(b) Solve $\frac{d y}{d x}=x+3 y, \quad x_{0}=0$ by Eular's modified method for $x=0.1$ in one step.

$$
y_{0}=1
$$

Compare the answer with exact value.
(c) Solve :

$$
(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos (\log (1+x))
$$

5. (a) Solve-

6
$y d x+x\left(1-3 x^{2} y^{2}\right) d y=0$
(b) Use polar co-ordinates to evaluate-

$$
\iint_{R} \frac{x^{2}+y^{2}}{x^{2} y^{2}} d x d y
$$

where R is area common to circles

$$
\begin{aligned}
& x^{2}+y^{2}=a x \text { and } x^{2}+y^{2}=b y \\
& a, b>0
\end{aligned}
$$

(c) Find total length of astroid curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.

Also prove that the line $\theta=\frac{\pi}{3}$ divides the arc of astroid i
(c) Solve by the method of yariatio of parameters.

7. (a) Find the volum blid bounded by cylinder

$$
x^{2}+2 a y \text {, the paraboloid } x^{2}+y^{2}=a z \text { and the plane } z=0
$$

(b) The radial aspement in a rotating disc at a distance r from the axis is given by

$$
\frac{d^{2} y}{d r^{2}}+\frac{1}{r} \frac{d u}{d r} \frac{u}{r^{2}}+K r=0
$$

Find the displacement if $u=0$ at $r=0$ and at $r=a$.
(c) Prove that-
(i) $\beta(m, m) \times \beta\left(m+\frac{1}{2}, m+\frac{1}{2}\right)=\frac{\pi}{m} 2^{1-4 m}$
(ii) $\int_{0}^{\infty} \frac{x^{4}\left(1+x^{5}\right)}{(1+x)^{15}} d x=\frac{1}{5005}$

