MATHEMATICAL SCIENCES

Paper - II

Sig	nature of Invigilators Roll No.
	(In figures as in Admit Card)
1.	Dec-08/01 Roll No.
2.	
4.	(in words)
	me of the Areas/Section (if any)
Tin	ne Allowed: 75 Minutes] [Maximum Marks: 100
_	tructions for the Candidates
1.	Write your Roll Number in the space provided on the top of this page.
2.	This paper consists of Seventy Four (74) multiple choice type questions. Attempt any fifty (50) questions.
3.	Each item has upto four alternative responses marked (A), (B), (C) and (D). The answer
	should be a capital letter for the selected option. The answer letter should entirely be
	contained within the corresponding square.
	Correct method A Wrong method A OR A
4.	Your responses to the items for this paper are to be indicated on the ICR Answer Sheet under Paper II only.
5 .	Read instructions given inside carefully.
6.	Extra sheet is attached at the end of the booklet for rough work.
7.	You should return the test booklet to the invigilator at the end of paper and should not carry any paper with you outside the examination hall.
પરી	શાર્શીઓ માટે સૂચનાઓ :
٩.	આ પાનાની ટોચમાં દર્શાવેલી જગ્યામાં તમારો રોલનંબર લખો.
₹.	આ પ્રશ્નપત્રમાં બહુવૈકલ્પિક ઉત્તરો ધરાવતા કુલ સુમ્મોતેર (૭૪) પ્રશ્નો આપેલા છે. કોઈપણ (૫૦) પ્રશ્નોના
	જવાબ આપો.
з.	પ્રત્યેક પ્રશ્ન વધુમાં વધુ ચાર બહુવૈકલ્પિક ઉત્તરો ધરાવે છે. જે (A), (B), (C) અને (D) વકે દર્શાવવામાં
•	આવ્યા છે. પ્રશ્નનો ઉત્તર કેપીટલ સંજ્ઞા વડે આપવાનો રહેશે. ઉત્તરની સંજ્ઞા આપેલ ખાનામાં બરાબર સમાઈ
	જાય તે રીતે લખવાની રહેશે.
	ખરી રીત : 🛕 ખોટી રીત : 🛕 ,
٧.	આ પ્રશ્નપત્રના જવાબ આપેલ ICR Answer Sheet ના Paper II વિભાગની નીચે આપેલ ખાનાઓમાં આપવાના ૨હેશે.
૫.	અંદર આપેલ સૂચનાઓ કાળજીપૂર્વક વાંચો.
۶.	આ બુકલેટની પાછળ આપેલું પાનું ૨ફ કામ માટે છે.

પરીક્ષા સમય પૂરો થઈ ગયા પછી આ બુકલેટ જે તે નિરીક્ષકને સોપી દેવી. કોઈપણ કાગળ પરીક્ષા ખંડની

બહાર લઈ જવો નહીં.

MATHEMATICAL SCIENCES

Paper-II

- NOTE: This paper contains SEVENTY FOUR (74) multiple-choice/Assertion and Reasoning/Matching questions, each question carrying two (2) marks. Attempt ANY FIFTY questions.
- નોંધ : આ પ્રશ્નપત્રમાં **યુમ્મોતેર (૭૪)** બહુવિકલ્પીય પ્રશ્નો, સાચું-ખોટું અને જોડકાં બનાવવાના પ્રશ્નો છે. **પચાસ (૫૦)** પ્રશ્નોના જવાબ લખવાના છે. પ્રત્યેક પ્રશ્નના **લે (૨)** ગુણ છે.
- 1. For the series $\sum_{n=1}^{\infty} \cos \frac{1}{n^3}$, which of the following is true?
 - (A) It is convergent but not absolutely convergent
 - (B) It is absolutely convergent
 - (C) It is divergent to ∞
 - (D) It is not convergent but sequence of partial sums oscillates finitely
- 2. If f is a real-valued function uniformly continuous on (0, 1), then which of the following is true?
 - (A) f is a bounded function and would be continuous always
 - (B) f is a continuous function always but may be unbounded
 - (C) f may be a discontinuous function but would be bounded always
 - (D) f may neither be bounded and may not be continuous
- 3. For the equation $1 + 2x + x^3 + 4x^5 = 0$, which of the following is true?
 - (A) It does not possess any real root
 - (B) It possesses exactly one real root
 - (C) It possesses exactly two real roots
- (D) It possesses exactly three real roots

 Math Sci.—II

 3

- 4. If f and g are Riemann integrable functions such that g o f is also defined. Then which of the following is true?
 - (A) $g \circ f$ is always Riemann integrable
 - (B) If f is continuous and g is Riemann integrable, then g o f is always Riemann integrable
 - (C) If g is continuous and f is Riemann integrable, then g o f is always Riemann integrable
 - (D) g o f is Riemann integrable only when one of them is a constant function
- 5. The domain of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{n^4}{(n+1)(n+2)} z^n \text{ is :}$$

(A) $\{z : |z| < 1\}$

(B) $\{z : |z| \leq 1\}$

(C) {0}

- (D) $\{z : |z| < e\}$
- 6. If $r = \{z : |z| = 1\}$, then what is the value of :

$$\int_{r} \frac{\cos z}{z^2 (z-2)} dz ?$$

(A) $-2\pi i$

(B) $-\frac{3\pi i}{2}$

 $(\mathbf{C}) - \frac{\pi}{2}$

(D) (

- 7. If $f(z) = e^{\frac{1}{z^2}}$, $z \neq 0$ and f(0) = 0 and $r = \{z : |z| = 1\}$, then which of the following is true?
 - (A) f has a removable singularity at z = 0 and $\int f(z) dz = 0$
 - (B) f has a pole of order 2 at z = 0 and $\int_{z}^{z} f(z) dz = 0$
 - (C) f has an essential singularity at z = 0 and $\int_{a}^{\infty} f(z) dz = 0$
 - (D) $\int f(z) dz$ is indeterminate
- 8. Suppose B is a non-zero real skew-symmetric matrix of order 3 and A is a non-singular matrix with inverse C. Then rank of ABC is:
 - (A) 0, 1 or 2

(B) definitely 1

(C) definitely 2

- (D) definitely 3
- 9. Let $U = \mathbb{R}^3$, be the vector space of 3 tuples of real numbers over \mathbb{R} . Let V be the subspace of U generated by the vectors (1, 2, -1), (4, -3, 2) and (1, -9, 5). Let W satisfy $U = V \oplus W$. Then dimension of W is:
 - (A) 0

(B) 1

(C) 2

(D) 3

10. The system of equations:

$$x + 2y + 4z = 5$$

$$-x + 3z = 6$$

3x + y - 2z = 7

possesses :

(A) No solution

(B) Unique solution

(C) Two solutions

(D) Infinite number of solutions

11. The real quadratic form X'AX, where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$$

is :

(A) Positive definite

- (B) Negative definite
- (C) Positive semidefinite
- (D) Indefinite

12. If A is a square matrix of order n > 1 and if

$$p(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + (a_n - 1) = 0$$

is its characteristic equation then a necessary and sufficient condition that 0 is an eigenvalue of A is:

$$(A) a_n = 0$$

(B)
$$a_n = 1$$

(C)
$$a_n = 2$$

(D)
$$a_n = n + 1$$

13. Suppose that the distribution of a rv X is given by:

$$P(X = -1) = 1/6 = P(X = 4)$$
 and $P(X = 0) = 1/3 = P(X = 2)$.

Then find $E\left(\frac{X}{X+2}\right)$.

(A)
$$\frac{1}{36}$$

(B)
$$\frac{1}{18}$$

(C)
$$\frac{1}{9}$$

(D)
$$\frac{1}{6}$$

14. Suppose X_1 and X_2 are independent rvs with a common d.f. F. Let $X = \min (X_1, X_2)$. Then what is the df of X?

(A)
$$F^2(x)$$

(B)
$$.1 - F^2(x)$$

(C)
$$(1 - F(x))^2$$

(D)
$$1 - (1 - F(x))^2$$

15. The joint distribution of two rvs X and Y is given below:

X	1	2
0	$\frac{1}{4}$	$\frac{1}{4}$
1	$\frac{1}{4}$	$\frac{1}{4}$

Let $P_1 = \left\{ \left(X < \frac{1}{2}\right), \left(Y > 1\right) \right\}, P_2 = \left\{ \left(X \ge \frac{1}{2}\right), \left(Y > 1\right) \right\}.$ Then which of the

following holds?

- (A) The events in both P₁ and P₂ are independent
- (B) Only in P₁ the events are independent
- (C) Only in P2 the events are independent
- (D) In both P₁ and P₂ the events are not independent

16. Consider the functions:

$$\mathbf{F}_{1}(x) = \begin{cases} e^{x} & , & \text{if } x < 0 \\ 1 & , & \text{if } x \ge 0 \end{cases}$$

and

$$F_2(x) = \begin{cases} 0 & , & \text{if } x < 0 \\ 1 - e^{-2x} & , & \text{if } x \ge 0 \end{cases}$$

Then which of the following is true?

- (A) Both F_1 and F_2 are d.fs.
- (B) Only F_1 is a d.f.

(C) Only F₂ is a d.f.

(D) Neither F_1 nor F_2 is a d.f.

17. Let X and Y be two independent Poisson r.vs. with EX = EY. Let $\alpha = P(X \le 2 | X + Y = 5)$. Then what can you say about α ?

(A) $\alpha < \frac{1}{2}$

 $(B) \quad \alpha > \frac{1}{2}$

(C) $\alpha = \frac{1}{2}$

(D) a cannot be evaluated

because EX is not known

18. If P(A) = 0.63, P(B) = 0.5 and $P(A' \cap B) = 0.07$, then what is $P(A \cup B)$?

(A) 0.93

(B) 0.70

(C) 0.53

(D) 0.46

- **19**. Consider an L.P.P. for which the constraints are given by the equation $A\underline{x} = \underline{b}$ (*). Where A is an $m \times n$ matrix with n > m. Suppose \underline{x}_0 satisfies (*). Which of the following conditions will make \underline{x}_0 a basic feasible solution ?
 - (A) It contains exactly (n m) zeros
 - (B) It contains at most (n m) zeros
 - (C) It contains at least (n m) zeros
 - (D) It contains at least m zeros
- Consider the following L.P. Problem: 20.

Maximize
$$x + 3y + z$$

Subject to $x + y \le 3$
 $x + z \le 2$
 $y + z \le 3$
 $x \ge 0, y \ge 0, z \ge 0$

Then which of the following solutions is optimal?

(A)
$$x = 1$$
, $y = 2$, $z = 1$

(B)
$$x = 1, y = 2, z = 0$$

(C)
$$x = \frac{1}{2}$$
, $y = \frac{5}{2}$, $z = \frac{1}{2}$ (D) $x = 0$, $y_2 = 3$, $z = 0$

(D)
$$x = 0$$
, $y_2 = 3$, $z = 0$

- Consider the series $\sum_{n=4}^{\infty} \left(\frac{1}{n^2 1} \right)$. Which of the following is true?
 - (A) The series converges and its sum is a rational number
 - (B) The series diverges to ∞
 - (C) The series oscillates
 - (D) The series converges and its sum is an irrational number

- 22. Let A be the set of all real algebraic numbers and B be the set of all sequences whose terms are members of {0, 3}. Then:
 - (A) both A and B are countable
 - (B) A is uncountable and B is countable
 - (C) A is countable and B is uncountable
 - (D) both A and B are uncountable
- 23. Let $f:[0, 2] \to \mathbb{R}$ be any monotonic function. Then which of the following is true?
 - (A) f must be continuous everywhere, but f may not be differentiable everywhere
 - (B) f must be continuous everywhere except for a countable set
 - (C) f must be differentiable everywhere
 - (D) f need not be continuous at any point
- 24. Let $g_n(x) = \frac{nx}{1 + n^2x^2}$, $x \in \mathbb{R}$, $n = 1, 2, 3, \dots$. Then the sequence $\{g_n\}$:
 - (A) converges pointwise everywhere and the limit function is continuous everywhere
 - (B) converges pointwise everywhere and the limit function is not continuous at some points
 - (C) converges pointwise only at x = 0
 - (D) converges pointwise at no $x \in \mathbf{R}$

25. Let $f(x) = \frac{1}{x}$, $x \neq 0$. Then which of the following is true?

(A)
$$\lim_{x\to 0} f(x) = \infty$$

(B)
$$\lim_{x\to 0} f(x) = 0$$

(C)
$$\lim_{x\to 0} f(x) = 1$$

(D) $\lim_{x\to 0} f(x)$ does not exist

26. If Arg $(z+3)=\frac{\pi}{3}$, then the least value of |z| is:

(B)
$$\frac{\sqrt{3}}{2}$$

(C)
$$\sqrt{3}$$

(D)
$$\frac{3\sqrt{3}}{2}$$

27. The image of $\{z : \text{Re } z < 0, |\text{Im } z| < \pi\}$ under the exponential function is :

(A) interior of unit circle $-\{z : \text{Re } z = 0\}$

(B) lower half plane $-\{z: \text{Im } z=0\}$

(C) interior of unit circle $-\{z : \text{Re } z \leq 0 \text{ and Im } z = 0\}$

(D) upper half plane $-\{z : \text{Im } z = 0\}$

28. The value of the cross ratio $(7 + i, 1, 0, \infty)$ is :

$$(A) 6 + i$$

(B)
$$-6 + i$$

(C)
$$6 - i$$

(D)
$$-6 - i$$

29. The function $f(x, y) = x^3 + ax^2y + bxy^2 + cy^3$ is entire only if:

(A)
$$a = 3i$$
, $b = -3$, $c = i$

(B)
$$a = 3i, b = -3, c = -i$$

(C)
$$a = -3i$$
, $b = 3$, $c = i$

(D)
$$a = -3i$$
, $b = -3$, $c = i$

- 30. If $f(z) = \frac{z 1 i}{z^2 (4 + 3i)z + (1 + 5i)}$, then which of the following is true?
 - (A) all singularities of f are poles
 - (B) all singularities of f are removable
 - (C) f has a pole and a removable singularity
 - (D) f has no singularities
- 31. If H and K are subgroups of a group G and $S = H \cap K$, $T = H \cup K$, then which of the following is *true*?
 - (A) Both S and T are subgroups of G
 - (B) Neither S nor T is a subgroup of G
 - (C) S is a subgroup of G but T may not be a subgroup of G
 - (D) T is a subgroup of G but S may not be a subgroup of G
- 32. Let H be a subgroup of a group G and N(H) = $\{g \in G | gH \ g^{-1} = H\}$. Then which of the following is true?
 - (A) N(H) may not be a subgroup of G
 - (B) N(H) is a subgroup of G and H is a normal subgroup of N(H)
 - (C) N(H) is a subgroup of G but H may not be a subgroup of N(H)
 - (D) N(H) must be a normal subgroup of G

33. Let G be a group, A(G) be the group of all automorphisms of G under the binary operation of composition and

$$I(G) = \{T_g \in A(G) | g \in G, T_g(x) = g^{-1}xg, \forall x \in G\}.$$

Then which of the following is true?

- (A) I(G) is a subgroup of A(G), which may not be normal
- (B) I(G) may not be a subgroup of A(G)
- (C) I(G) must be an abelian subgroup of A(G)
- (D) I(G) is always a normal subgroup of A(G)
- 34. Let U be an ideal of a ring R, $r(U) = \{x \in \mathbb{R} | xu = 0 \text{ for all } u \in U\}$ and $[\mathbb{R} : U] = \{x \in \mathbb{R} | rx \in U \text{ for every } r \in \mathbb{R}\}$. Then which of the following is true?
 - (A) r(U) and [R:u] are both ideals of R
 - (B) r(U) is an ideal of R but [R:u] need not be an ideal of R
 - (C) r(U) need not be an ideal of R but [R: u] is an ideal of R
 - (D) none of r(U) and [R:u] may be an ideal of R
- 35. Let X be the set of all polynomials with real coefficients of degree 4 along with zero polynomial and Y be the set of all polynomials with real coefficients of degree ≤ 4 along with zero polynomial. Then which of the following is true?
 - (A) X and Y are linear spaces over R and X is a linear subspace of Y
 - (B) X and Y are linear spaces over R and X is not a linear subspace of Y
 - (C) neither X nor Y is a linear space over R
- (D) Y is a linear space over R but X is not a linear space over R

 Math Sci.-II 13 [P.T.O.]

- 36. Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation. Then which of the following is true?
 - (A) T must have some real eigenvalues which may be less than 4 in number
 - (B) T may not have any real eigenvalues at all
 - (C) T must have infinitely many real eigenvalues
 - (D) T must have exactly 4 real eigenvalues
- 37. Let $M = \begin{bmatrix} 2 & 0 \\ 5 & 1 \end{bmatrix}$. Then M satisfies the relation (I denotes 2 × 2 identity matrix):
 - (A) $M^2 + 3M 2I = 0$
- (B) $2M^2 5M + I = 0$
- (C) $M^2 3M + 2I = 0$
- (D) $2M^2 + 5M I = 0$
- 38. Let $T_1: \mathbf{R}^3 \to \mathbf{R}^3$ be defined as $T_1(x, y, z) = (x, y + 1, 0)$ and $T_2: \mathbf{R}^3 \to \mathbf{R}^3$ be defined as $T_2(x, y, z) = (x + y, y + z, z + x)$. Then which of the following is true?
 - (A) Both T_1 and T_2 are linear transformations
 - (B) Neither T_1 nor T_2 is a linear transformation
 - (C) T₁ is a linear transformation but T₂ is not a linear transformation
 - (D) T_1 is not a linear transformation but T_2 is a linear transformation
- 39. As $x \to \infty$, every solution of

$$x^{2} \frac{d^{2}y}{dx^{2}} + 4x \frac{dy}{dx} + 2y = 2, x > 0$$

approaches to:

(A) ∞

(B)

(C) 1

(D) -∞

- 40. The bacteria in a certain culture increase at a rate proportional to the number present. The differential equation governing the process is:
 - (A) $\frac{dy}{dt} = ky$, where k is any real constant
 - (B) $\frac{dy}{dt} = k^2 y,$
 - (C) $\frac{dy}{dt} = y + kt,$
 - (D) $\frac{d^2y}{dt^2} = k^2y$
- 41. For the differential equation $y \frac{dy}{dx} + x = 0$, which of the following is a solution?
 - (A) $x^2 + y^2 = c$ (constant) and x is any real number
 - (B) $y = \sqrt{c x^2}, -\sqrt{c} \le x \le \sqrt{c}$
 - (C) $y = -\sqrt{c x^2}, -\sqrt{c} \le x \le \sqrt{c}$
 - (D) $y = \sqrt{c x^2}, -\sqrt{c} < x < \sqrt{c}$
- 42. Which of the following is a solution of

$$\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + 3 \frac{\partial^2 z}{\partial y^2} = 0 ?$$

- (A) $z = \sin (y 2x) + y \cos (y + x)$
- (B) $z = x \sin (y + 2x) + \cos (y x)$
- (C) $z = \sin (y 2x) + \cos (y x)$
- (D) $z = y \sin (y + 2x) + x \cos (y + x)$

43. Which of the following is a solution of:

$$\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0 ?$$

$$(A) \quad u = \exp (y - 2x)$$

$$(B) \quad u = (2x + y)^3$$

(C)
$$u = (y + 2x) \exp (y - 2x)$$

(D)
$$u = (x + 2y) \exp (y - 2x)$$

44. The partial differential equation having the family of spheres $(x-a)^2 + (y-b)^2 + z^2 = c^2$, where a, b, c are constants, as its integral surfaces will be:

- (A) linear & first order
- (B) non-linear & first order
- (C) linear & second order
- (D) non-linear & second order

45. The average of a group of 20 observations is 16. If 2 observations with average 10 are discarded and 6 observations with average 10 are included in the group, then what is the percentage change in the average of the group?

(A) 0.0%

(B) 6.25% decrease

(C) 6.66% increase

(D) None of these

46. Let the line of regression of X on Y corresponding to a data set be x = 2y + 4. If U = 2X + 4, V = 3Y - 4, then find the coefficient of regression of U on V:

(A) 3/4

(B) 3

(C) 4/3

(D) 2

- 47. At a company employees must report at 7.30 a.m. The arrival times of employees follow normal with mean $\mu = 7.25$ a.m. and standard deviation of 4 minutes. Find the probability that an employee arrives late. ($\Phi(x)$ denotes the distribution function of X ~ N(0, 1))
 - (A) $1-\Phi\left(\frac{5}{4}\right)$

(B) $\Phi\left(\frac{5}{4}\right)$

(C) $\Phi\left(\frac{.05}{4}\right)$

- (D) $1-\Phi\left(\frac{.05}{4}\right)$
- 48. Let X and Y be iid exponential $E(\lambda)$ variates. Then what is the distribution of $\frac{X}{X+Y}$?
 - (A) Beta (2, 1) of Type I
- (B) Beta (2, 1) of Type II
- (C) Beta (1, 2) of Type I
- (D) Beta (1, 2) of Type II
- 49. Let $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$. Then for $X_n + Y_n \xrightarrow{p} X + Y$ to hold, which of the following is appropriate?
 - (A) only if both X and Y are degenerate
 - (B) only if both X_n and Y_n are independent, $\forall n \geq 1$
 - (C) only if X or Y is degenerate
 - (D) none of the above
- 50. For CLT to hold for a sequence $\{X_n\}$ of iid rvs, which of the following is appropriate?
 - (A) It is necessary that $E(X_1^K) < \infty$, $\forall K \ge 1$
 - (B) It is sufficient that $E(X_1^2) < \infty$
 - (C) It is sufficient that characteristic function $\phi_{X_1}(t)$ exists
 - (D) It is sufficient that $E(X_1) = 0$

51. Let (X, Y) have density

$$f(x, y) = \begin{cases} \lambda_1 \ \lambda_2 \ e^{-\lambda_1 x - \lambda_2 y} &, \quad x > 0, y > 0 \\ 0 &, \quad \text{otherwise} \end{cases}$$

Then find P(X < Y).

$$(A) \quad \frac{\lambda_2}{\left(\lambda_1 + \lambda_2\right)}$$

$$(B) \quad \frac{\lambda_1}{\left(\lambda_1 + \lambda_2\right)}$$

(C)
$$\lambda_1 \lambda_2$$

(D)
$$\frac{\lambda_1 \lambda_2}{(\lambda_1 + \lambda_2)}$$

52. Let the rv X have density

$$f(x) = \begin{cases} 1 - |1 - x| & \text{,} & 0 < x < 2 \\ 0 & \text{,} & \text{otherwise} \end{cases}$$

Then find $P\left(\frac{1}{2} \le X \le \frac{3}{2}\right)$.

 $(A) \quad \frac{3}{4}$

 $(B) \quad \frac{1}{2}$

(C) $\frac{1}{4}$

(D) $\frac{2}{3}$

53. Let $\{X_n\}_{n\geq 1}$ be a sequence of iid Bernoulli B(1, p) variates, and N ~ P(λ), Poisson with mean λ . Assume N is independent of $\{X_n\}$, and $S_0 \equiv 0$, degenerate at zero. Then what is the distribution of $S_N = X_1 + \dots + X_N$?

(A) Binomial B(N, p)

- (B) Poisson $P(\lambda p)$
- (C) Negative binomial $NB(\alpha, p)$
- (D) Geometric G(N)

54. Let $X \sim U(0, \theta)$ for $\theta > 0$. Then which of the following holds?

 $(A) \quad V(X) < E(X)$

(B) V(X) > E(X)

(C) V(X) = E(X)

(D) Nothing can be said in general

55.	Let $X \sim B(n, p)$. For the distribution	ution to have a unique mode, which of the			
	following is appropriate?				
	(A) np is an integer	(B) $(n + 1)p$ is not an integer			
	(C) $(n-1)p$ is an integer	(D) $(n-1)p$ and np are both integers			
56.	Let X ₁ ,X _n be iid N(0, 1) ve	ariables. Consider			

$$Y_{1} = \frac{\overline{X}\sqrt{(n-1) n}}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}} \text{ and } Y_{2} = \frac{\sqrt{n} \overline{X}}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}}$$

Then which of the following is true?

(A) Both
$$Y_1$$
 and Y_2 follow t_{n-1}

(B) Both
$$Y_1$$
 and Y_2 follow t_n

(C)
$$Y_1 \sim t_{n-1}$$
, but Y_2 does not follow t_n

(D)
$$Y_2 \sim t_n$$
, but Y_1 does not follow t_{n-1}

Let T_n and T'_n be two independent unbiased consistent estimators of a parameter θ . Then which of the following is an unbiased estimator

a parameter
$$\theta$$
. Then which of the following is an unbiased estimator of θ^2 ?

(B) T_n^2

(C) $T_n \cdot T'_n$ None of these **(D)**

Let X_1 , X_2 ,, X_n be a random sample from $N(\mu, 1)$ and let $T = \overline{X}^2 - \frac{1}{n}$ be an estimator of μ^2 . Which of the following properties does T possess?

- T is unbiased estimator of μ^2
- T attains Cramer-Rao lower bound of variance
- T is UMVUE of μ^2 .

(A) T_n^2

59. Let X_1 , X_2 ,, X_n be a random sample from N(0, σ^2). Find estimator of σ^2 , obtained by the method of moments.

(A)
$$\frac{1}{n}\sum_{i=1}^{n} X_{i}$$

(B)
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$$

(C)
$$\frac{1}{n-1} \sum_{i=1}^{n} X_i^2$$

(D)
$$\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}$$

60. Let X_1, X_2, \dots, X_n be a random sample from Poisson distribution $P(\lambda)$. Let $T = \sum_{i=1}^{n} X_i$. Find UMVUE of $e^{-\lambda}$.

$$(A) e^{\frac{T}{n}}$$

(B)
$$\left(1-\frac{1}{n}\right)^{\mathrm{T}}$$

(C)
$$\left(1-\frac{1}{n}\right)^{\frac{T}{n}}$$

- (D) None of these
- 61. Consider an exponential distribution with mean $\theta \in \{2, 3\}$. Consider the problem of testing $H_0: \theta = 3 \ V/s \ H_1: \theta = 2$. A random sample of size 5 is selected. If $T = \sum_{i=1}^{5} X_i$ is the sum of the observed values, what is the

critical region of size α ?

- (A) $T \ge C_0$ where C_0 is such that $P(T \ge C_0 | \lambda = 2) = \alpha$
- (B) $T < C_0$ where C_0 is such that $P(T < C_0 | \lambda = 2) = \alpha$
- (C) $T \ge C_0$ where C_0 is such that $P(T \ge C_0 | \lambda = 3) = \alpha$
- (D) $T < C_0$ where C_0 is such that $P(T < C_0 | \lambda = 3) = \alpha$
- 62. Let X_1 ,, X_n be iid $N(\theta, \sigma^2)$ $H_0: \sigma^2 = 1$, $H_1: \sigma^2 > 1$. Which of the following is the form of the acceptance region for H_0 for a suitable test?

(A)
$$\sum X_i^2 < c$$

(B)
$$\sum_{i} (X_i - \overline{X})^2 > c$$

(C)
$$\sum_{i} (X_i - \overline{X})^2 < c$$

(D)
$$|\overline{X}| < c$$

The following is an optimal simplex tableau of an l.p.p. where X₁, X₂ are decision variables and X3, X4 are slack variables.

		c_{j}	2	4	0	0
Objective	Basic					
coefficients	Variables	Soln.	X ₁	$\mathbf{X_2}$	X ₃	X ₄
4	$\mathbf{X_2}$	5/2	1/2	1	1/2	0
0	$\mathbf{X_1}$	3/2	1/2	0 ,	-1/2	1
	· · · · · · · · · · · · · · · · · · ·	$z_j - c_j$	0	0	2	0

Then which of the following is the right hand side vector of the original l.p.p.?

$$(A) \binom{5/2}{3/2}$$

(B)
$$\begin{pmatrix} 5 \\ 4 \end{pmatrix}$$
(D) $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$

$$(\mathbf{C})^{r}$$
 $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$

(D)
$$\begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

For a primal-dual pair with max z_1 as primal objective and min z_2 as dual objective, which of the following is always true?

(A)
$$z_1 > z_2$$

(B)
$$z_1 = z_2$$

(C)
$$z_1 \leq z_2$$

(D)
$$z_1 \geq z_2$$

70. Consider a two-person zero-sum game, given by:

		Player B		
· · · · · · · · · · · · · · · · · · ·		B ₁	$\mathbf{B_2}$	$\mathbf{B_3}$
	A ₁	2	4	5
Player A	$\mathbf{A_2}$	10	7	Q
	$\mathbf{A_3}$	4	P	6

To have the saddle point at the entry (2, 2) which set of range of values of P and Q is incorrect?

(A)
$$P \le 7$$
, $Q > 7$

(B)
$$P \leq 7$$
, $Q \geq 7$

(C)
$$P < 7, Q \ge 7$$

(D)
$$P > 7$$
, $Q > 7$

71.	Two persons P ₁ and P ₂ draw simple random samples of size 3 from a
	population consisting of $\{U_1, U_2, U_3, U_4 \text{ and } U_5\}$. The samples that they draw were

$$P_1: \{U_5,\ U_2,\ U_4\} \ and \ P_1: \{U_2,\ U_5,\ U_2\}.$$

Then which of the following statements is definitely false?

- (A) P₁ must have drawn by SRSWR
- (B) P₂ must have drawn by SRSWR
- (C) P₁ must have drawn by SRSWOR
- (D) P₂ must have drawn by SRSWOR
- 72. In large samples, with SRS, what is a condition for the ratio estimate $\hat{Y}_R = \frac{\hat{Y}}{\hat{Y}}$. X to have a smaller variance than the estimate $\hat{Y} = N\overline{y}$?
 - (A) $2\rho > C_x/C_y$

(B) $2\rho < C_x/C_y$

(C) $2\rho < C_v/C_r$

(D) $2\rho > C_{\nu}/C_{x}$

Where C_x , C_y and ρ are respectively the coefficient of variation of x, y and the correlation coefficient between x and y.

- 73. Which of the following basic principles is suitable for estimation of the magnitude of experimental error?
 - (A) Randomization

(B) Replication

(C) Local control

- (D) All these three
- 74. The following is an ANOVA TABLE of an LSD with 6 missing values denoted by a to f.

Source	d.f.	s.s.	m.s.s.	$\mathbf{F}_{oldsymbol{c}}$
Rows	4	68.00	17.00	
Columns	4	150.00	37.50	
Treatments	a	b	c	7.732
Error	12	128.00	d	
Total	e	f		

Then find the value of b.

(A) 4

(B) 330

(C) 676

(D) 82.50

ROUGH WORK