		2
J	ı	
į		
Г		

Sig	nature of Invigilators Roll No.
1	MATHEMATICAL SCIENCES (In figures as in Admit Card)
2	Paper II Roll No.
	(In words)
D	/03/1
	Name of the Areas/Section (if any)
Tin	ne Allowed: 75 Minutes] [Maximum Marks: 100
Ins	tructions for the Candidates
1.	Write your Roll Number in the space provided on the top of this page.
2.	This paper consists of seventy four (74) multiple choice type questions. Attempt any fifty (50) questions.
3.	Each item has upto four alternative responses marked (A), (B), (C) and (D). The answer should
	be a capital letter for the selected option. The answer letter should entirely be contained within
	the corresponding square.
	Correct method A Wrong Method A or A
4.	Your responses to the items for this paper are to be indicated on the ICR Answer Sheet under
	paper II only
5 .	Read instructions given inside carefully.
6.	One sheet is attached at the end of the booklet for rough work.
7.	You should return the test booklet to the invigilator at the end of paper and should not carry
	any paper with you outside the examination hall.
	ીક્ષાર્થીઓ માટેની સૂચનાઓ ઃ
	આ પાનાની ટોચમાં દર્શાવેલી જગ્યામાં તમારો રોલ નંબર લખો.
	આ પ્રશ્નપત્રમાં ચવોહત્તેર (74) બહુવૈકલ્પિક ઉત્તરોવાળા પ્રશ્નો છે. કોઈપણ (50) પ્રશ્નોના જવાબ આપો.
3.	પ્રત્યેક પ્રશ્ન વધુમાં વધુ ચાર બહુવૈકલ્પિક ઉત્તરો ધરાવે છે. જે (A), (B), (C) અને (D) વડે દર્શાવવામાં આવ્યા છે. પ્રશ્નનો ઉત્તર
	કેપીટલ સંજ્ઞા વડે આપવાનો રહેશે. ઉત્તરની સંજ્ઞા આપેલ ખાનામાં બરાબર સમાઈ જાય તે રીતે લખવાની રહેશે.
	ખરી રીત : 🛕 ખોટી રીત : 🛕 , 🖎
	આ પ્રશ્નપત્રના જવાબ આપેલ ICR Answer Sheetના Paper II વિભાગની નીચે આપેલ ખાનાંઓમાં આપવાના રહેશે.
	અંદર આપેલ સૂચનાઓ કાળજીપૂર્વક વાંચો.
	આ બુકલેટની પાછળ આપેલું પાનું ૨ફ કામ માટે છે.
૭.	પરીક્ષાસમય પૂરો થઈ ગયા પછી આ બુકલેટ જે તે નિરીક્ષકને સોંપી દેવી. કોઈ પણ કાગળ પરીક્ષાખંડની બહાર લઈ

જવો નહી.

MATHEMATICAL SCIENCES

PAPER-II

Note:—This paper contains seventy four (74) multiple choice questions, each carrying two (2) marks. Attempt any fifty (50) questions.

1. Let

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$$

- (A) $\{a_n\}$ is increasing and unbounded
- (B) $\{a_n\}$ is bounded, but not convergent
- (C) $\{a_n\}$ is convergent, but not bounded
- (D) $\{a_n\}$ is increasing and bounded
- 2. Let $f: [0, 1] \rightarrow [0, 1]$ be continuous.
 - (A) There exists no $x \in [0, 1]$ such that f(x) = x
 - (B) For some $x \in [0, 1], f(x) = x$
 - (C) For some $x \in [0, 1], f(x) = 0$
 - (D) For some $x \in [0, 1], f'(x) = 1$
- 3. Let

$$\alpha = \int_0^\pi \frac{x}{5+3\cos x} dx$$
 and $\beta = \frac{16\alpha}{\pi^2}$

Which of the following is definitely true?

(A) $1 \leq \beta \leq 4$

 $(B) \quad 0 \leq \beta \leq 2$

(C) $2 \le \beta \le 5$

- (D) $1 \le \beta \le 3$
- 4. Let $f_n(x) = x^n \quad (0 \le x \le 1)$.
 - (A) $\{f_n\}$ converges uniformly on [0, 1]
 - (B) $\{f_n\}$ converges pointwise on [0, 1] and the limit function is continuous on [0, 1]
 - (C) $\{f_n\}$ converges pointwise on [0, 1], but the limit function is not continuous on [0, 1]
 - (D) $\{f_n\}$ does not converge pointwise on [0, 1]

5 .	If P and Q ar	re points on the	unit circle cor	esponding to	complex	numbore
	· · · · · · · · · · · · · · · · · · ·	$\frac{1}{2}+i\frac{\sqrt{3}}{2}$	and $-\frac{1}{2} + i^{-1}$	$\frac{\sqrt{3}}{2}$	complex	iranners
	respectively, w	what is the mea	sure of $\angle POG$?		

(A) 30°

(B) 60°

(C) 45°

- (D) 90°
- 6. The constant term in the Laurent series expansion of

is:
$$\frac{1 - \sin z}{z^3}$$
(A) $-\frac{1}{6}$
(B) $\frac{1}{6}$
(C) 1

7. The residue of the function

at its pole is:
$$\frac{z^2 - 3z + 4}{(z - 2003)^3}$$

(A) 2003

(B) 0

(C) -1

(D) 1

8. Let

$$P = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}, Q = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}, R = \begin{bmatrix} 3 & 0 & 2 \\ 4 & 0 & 1 \end{bmatrix} \text{ and } S = \begin{bmatrix} 1 & 2 \\ 6 & 5 \\ -5 & 10 \end{bmatrix}.$$

Then which one of the following expressions is undefined?

(A) $P + RS + Q^TP$

(B) $(P + Q)^T R + (P - Q)S^T$

(C) $(RS)^{-1} + P^{-1}Q$

- (D) $RS^T + PQ^{-1} + P^TQ$
- 9. Consider a vector space V over a field Q of rational numbers given by $V = \{a + b\sqrt{3} \mid a, b \in Q\}.$

Which of the following is not a basis of V?

(A) $\{1, \sqrt{3}\}$

(B) $\{5, \sqrt{3}\}$

(C) $\{0, 2\sqrt{3}\}$

(D) $\left\{1, \ \frac{\sqrt{3}}{2}\right\}$

Math. Sci.—II

10. Consider the system of equations

$$x + y + 3z = 2$$

$$x + 2y + 4z = 3$$

$$2x + 3y + az = b.$$

Then for what values of a and b the system has infinitely many solutions?

(A) a = 7; b = 5

(B) a = 5; b = 4

(C) a = 5; b = 5

- (D) a = 7; b = 4
- 11. If A and B are two $n \times n$ matrices and A.B = 0, then which one of the following statements is false?
 - (A) If A is non-singular, then B = 0
 - (B) If B is non-singular, then A = 0
 - (C) The given hypothesis implies that either A = 0 or B = 0
 - (D) If $A \neq 0$ and $B \neq 0$, then Rank of A < n and Rank of B < n
- 12. If A is 3×3 real matrix having eigenvalues 0, 2i and -2i, then matrix A can be:
 - (A) symmetric

(B) skew-symmetric

(C) orthogonal

- (D) unitary
- 13. A batch of 16 microchips contains 4 chips which do not work. A quality control procedure randomly selects 3 distinct chips and rejects the batch if none of the three chips works. The probability that the batch will be accepted by the procedure is:
 - (A) $\frac{3}{16}$

(B) $\frac{139}{140}$

(C) 0

- (D) None of these
- 14. Suppose E and F are independent events with positive probability. The probability that exactly one of them occurs is given by:
 - (A) P(E) + P(F) 2P(E) P(F)
- $(B) \quad P(E) \ + \ P(F) \ \ P(E) \ P(F)$

(C) P(E) P(F)

(D) min $\{P(E), P(F)\}$

- A discrete random variable X takes values 0, 1 and 2 with probabilities 1-3p, 2p and p respectively, where $0 . If <math>E(X^2) = \frac{3}{2}$, then the value of E(X) is equal to :

 (\mathbf{B}) 0

(C) $\frac{1}{3}$

- (D) 1
- A box contains 10 white and 15 black marbles. Ten marbles are selected at random without replacement. Hence the probability that x of the 10 marbles are white for $x = 0, 1, 2, \ldots, 10$ is given by:
 - (A) $\frac{\left(x\right)\left(\frac{10}{10-x}\right)}{\left(\frac{25}{10}\right)}$

(B) $\binom{10}{x} \left(\left(\frac{2}{5} \right)^x \left(\frac{3}{5} \right)^{10-x} \right)$

- (D) $\frac{\binom{10}{x}}{\binom{25}{x}}$
- X is a random variable with $E(X) = \mu$ and V(X) = 4. Using Chebyshev's 17. inequality upper bound for $P(|X - \mu| \ge 8)$ is equal to :
 - (A) $\frac{1}{16}$

(B) $\frac{1}{80}$

(C) $\frac{1}{4}$

- (D) $\frac{1}{64}$
- X₁, X₂ and X₃ are independent random variables and probability distribution of X_i , for i = 1, 2, 3 is :

X	1	2
Prob.	$\frac{i}{i+1}$	$\frac{1}{i+1}$

If $Y = \prod_{i=1}^{3} X_i$, (A) 1 then E(Y) is equal to :

(D) 5

Math. Sci.—II

19. Consider the L.P.P.

 $Maximize: Z = 3x_1 + 9x_2$

Subject to:

$$x_1 + 4x_2 \le 8$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0.$$

Then:

- (A) the L.P.P. has no feasible solution
- (B) the L.P.P. has an unbounded solution
- (C) there is redundancy in the problem
- (D) None of the above is true

20. Consider the L.P.P.

 $Maximize: Z = 2x_1 + x_2$

Subject to:

$$x_1 + 2x_2 \le 5$$

$$x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0.$$

Then the optimal value is:

(A) 7

(B) 8

(C) 2.5

(D) 10

- 21. Let C be the collection of all bounded subsets of R and D be the collection of all unbounded subsets of R.
 - (A) Both C and D are countable
 - (B) C is countable, but D is not
 - (C) If $E \in C$, then $E^C \in D$
 - (D) C is closed under finite union
- 22. Let d be the usual metric on \mathbf{R} .
 - (A) (\mathbf{R}, d) is complete, but \mathbf{R} has no least upper bound property
 - (B) \mathbf{R} has least upper bound property, but (\mathbf{R}, d) is not complete
 - (C) (R, d) is not complete, nor R has least upper bound property
 - (D) (\mathbf{R}, d) is complete and \mathbf{R} has the least upper bound property.

23. Let
$$s_n = -1 + (-1)^2 + (-1)^3 + \dots + (-1)^n$$
 and let

$$\alpha = \lim_{n \to \infty} s_n, \ \beta = \overline{\lim}_{n \to \infty} s_n.$$

(A)
$$\alpha = -1$$
, $\beta = 1$

(B)
$$\alpha = -\infty$$
, $\beta = \infty$

$$-(C) \quad \alpha = 1, \ \beta = 1$$

(D)
$$\alpha = -1, \beta = 0$$

24	 Let f be a function from [0, 1] to R. Which of the following is true? (A) If f has an infinite number of discontinuities in [0, 1], f is not monotonic on [0, 1]
	(B) If f has a discontinuity of second kind in $[0, 1]$, f is not monotonic on $[0, 1]$
	(C) If f has no discontinuity in $[0, 1]$, it is monotonic on $[0, 1]$
0=	(D) If f is monotonic on $[0, 1]$, then f is continuous on $[0, 1]$
25	. The norizontal strip in the z-plane bounded by the rays $y = 0$, $x \le 0$ and $y = \pi$, $x \le 0$ is mapped by $w = e^z$ in the w-plane into:
	(A) a vertical strip (B) a horizontal strip
	(C) an oblique strip (D) a semi-circular disc
26.	
	(A) $\cos x \sinh y$ (B) $\cos x \sinh y + 1$
	(C) $-\cos x \sinh y$ (D) $-\cos x \sinh y + 1$
27.	
	points?
	(A) Two (B) Three
	(C) Four (D) Five
28.	
	(A) 0 (B) i
	(C) 0
29.	(D) no point in the z-plane
	$\int_{\mathcal{C}} \frac{z^2 + 3z}{(z-1)^2} \ dz,$
	where C is $ z = 2$, is:
	(A) $2\pi i$ (B) $10\pi i$
	(C) $12\pi i$ (D) 0
30.	Consider the following functions defined for all non-zero complex numbers:
	$f_1(z) = z, f_2(z) = -z, f_3(z) = \frac{1}{z}, f_4(z) = -\frac{1}{z}.$
	Take the group $G = \{f_1, f_2, f_3, f_4\}$ under the composition of mappings. Then
	$f_2 \circ f_3^{-1} \circ f_4^{-1}$ is:
	(A) f_1 (B) f_2
	12
	(C) f_3 (D) f_4
Mat	h. Sci.—II 8

31.	~ •	and K are normal subgroups of G and quotient groups ers 6 and 4 respectively. Which of the following can?
	(A) 12	(B) 18
	(C) 24	(D) 36
_		

32. All non-identity elements of a finite cyclic group have the same order. Which of the following cannot be the order of the group?

33. Let Z[x] be the ring of polynomials with integral coefficients. Let $R = \{f(x) | f(x) \in Z[x] \text{ and } f(1) = 0 = f(2)\}.$

Then:

(A) R is not a subring of
$$Z[x]$$

(B) R is a subring but not an ideal of
$$Z[x]$$

(C) R is an ideal but not a maximal ideal of
$$Z[x]$$

(D) R is a maximal ideal of
$$Z[x]$$

34. Which of the following is/are integral domain/s with respect to the usual addition and multiplication of real numbers?

(1) R =
$$\{a\sqrt{3} \mid a \text{ rational}\}$$

(2) S = $\{a + b\sqrt{7} \mid a, b \text{ rational}\}$

(3)
$$T = \{17a \mid a \text{ integer}\}$$

35. Let ${\bf R}^3$ be a vector space of ordered 3-tuples of real numbers and let ${\bf S}_1$ and ${\bf S}_2$ be as follows :

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 | 2x + 3y + z = 0\}$$
 and $S_2 = \{(x, y, z) \in S_1 | 3x - y + 2z = 0\}.$

Then:

(A) Neither
$$S_1$$
 nor S_2 is a subspace of \mathbb{R}^3

(B) Both
$$\mathbf{S}_1$$
 and \mathbf{S}_2 are 2-dimensional subspaces of \mathbf{R}^3

(C)
$$S_1$$
 is 2-dimensional subspace of ${\bf R}^3$ and S_2 is one-dimensional subspace of ${\bf R}^3$

(D)
$$S_1$$
 is a subspace of \mathbb{R}^3 but S_2 is not a subspace of \mathbb{R}^3 .

- 36. Let V and W be two vector spaces over a field K and $F: V \to W$ be a linear map. Then F is an isomorphism if :
 - (A) dim V < dim W and F is one-one
 - (B) dim V > dim W and F is onto
 - (C) $\dim V = \dim W$
 - (D) $\dim V = \dim W$ and F is one-one
- 37. A linear transformation from $\mathbf{R}^3 \to \mathbf{R}^3$ is represented by a matrix

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array} \right].$$

Then which one of the following equations is valid?

(A)
$$2A^{-1} = -A^2 + 6A + 7I$$

(B)
$$A^3 - 6A^2 - 7A + 2I = 0$$

(C)
$$2A^{-1} = -A^2 - 6A - 7I$$

(D)
$$A^4 - 6A^3 + 7A^2 + 2A = 0$$

- 38. Suppose A is an $n \times n$ diagonalizable matrix and S and D are corresponding diagonalizing matrix and diagonal matrix respectively. Then which one of the following statements is false?
 - (A) Diagonal elements of D are eigenvalues of A and column vectors of S are corresponding eigenvectors
 - (B) All eigenvalues of A must be distinct
 - (C) A has n linearly independent eigenvectors
 - (D) S also diagonalizes A^k for any +ve integer k
- 39. Which of the following differential equations is linear?

$$(A) \quad xy'' + yy''' + \cos x = 0$$

(B)
$$e^{xy}y' + 2y = \sin x$$

(C)
$$x^{10}y'' + \frac{(\ln x + \tan x)^2}{x^3 + 10}y' + y = f(x)$$

$$(D) \quad (y')^2 + 2y = x$$

- 40. Which of the following differential equations is not exact?
 - (A) $2xy dx + (x^2 + 3y^2) dy = 0$
 - (B) $3x(xy-2)+(x^3+2y)dy=0$
 - (C) $\{xy \sin(xy) + \cos(xy)\} y dx + \{xy \sin(xy) \cos(xy)\} x dy = 0$
 - (D) $x^2y^3dx + x^3y^2dy = 0$
- 41. The singular solution of the differential equation

$$y = x \frac{dy}{dx} + a \left(\frac{dx}{dy} \right)$$

is:

 $(A) \quad x^2 = 2ay$

 $(B) \quad x^2 = 4ay$

 $(C) \quad y^2 = 4ax$

 $(D) \quad y^2 = 2ax$

42. If $D \equiv \frac{d}{dx}$, then

$$\frac{1}{(1+D^2)}(x^2-x+2)$$

is:

 $(A) x^2 + 2x$

(B) $x^2 - x$

(C) $x^2 + x$

- (D) $x^2 2x$
- 43. Which of the following is a solution of the partial differential equation

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = u ?$$

 $(A) \quad u = y^2 f(x/y)$

(B) $u = x^2 f(y/x)$

(C) u = yf(y/x)

(D) $u = xf(y^2/x)$

44. The differential equation

$$x\frac{\partial^2 z}{\partial x^2} + 3\frac{\partial^2 z}{\partial x \partial y} + y\frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial y} = 0$$

is:

- (A) elliptic for $xy < \frac{9}{4}$ and hyperbolic for $xy > \frac{9}{4}$
- (B) elliptic for $xy \le \frac{9}{4}$ and hyperbolic for $xy > \frac{9}{4}$
- (C) elliptic for $xy > \frac{9}{4}$ and hyperbolic for $xy < \frac{9}{4}$
- (D) elliptic for $xy > \frac{9}{4}$ and hyperbolic for $xy \le \frac{9}{4}$

45. If in the bivariate normal distribution with parameters

$$(\mu_x, \ \mu_y, \ \sigma_x^2, \ \sigma_y^2, \ \rho), \ \sigma_x \neq \sigma_y \ \text{ and } \rho = 0$$

the distribution is:

(A) symmetrical normal

- (B) degenerate normal on a line
- (C) degenerate normal at a point
- (D) not symmetric normal

46. If $\rho_{XY} = 1$, then :

- (A) Y is proportional to X
- (B) Y is inversely proportional to X
- (C) Y is same as X
- (D) X, Y are perfectly linearly related

47. Let A and B be events in a sample space. Then which of the following statements is *false*?

- (A) A and B are independent if and only if A and B' are independent
- (B) A and B' are independent if and only if A' and B are independent
- (C) A and A' are independent if A is a null set
- (D) A and A' are independent only if A is a null set.

- **48**. Which of the following cannot be obtained as a consequence of central limit theorem?
 - (A) Binomial distribution tends to normal
 - (B) Student's t distribution tends to normal
 - (C) Chi-square distribution tends to normal
 - (D) Gamma distribution tends to normal
- Let X be a r.v. with $E(X) = \mu$ and V(X) = 1. Then which of the following **49**. is true?

(A)
$$P[|X - \mu| \le 2] \le \frac{1}{4}$$
 (B) $P[|X - \mu| \le 2] \ge \frac{3}{4}$

(B)
$$P[|X - \mu| \le 2] \ge \frac{3}{4}$$

(C)
$$P[|X - \mu| \ge 2] \ge \frac{1}{4}$$
 (D) $P[X - \mu \ge 2] \le \frac{1}{8}$

(D)
$$P[X - \mu \ge 2] \le \frac{1}{8}$$

The joint probability distribution of X and Y is given below: **50**.

X	-1	0	1
-2	1/8	1/8	1/8
0	1/8	0	1/8
2	1/8	1/8	1/8

Which of the following is true?

- (A) X and Y are identically distributed
- (B) X and Y are not independent
- (C) X is a symmetric r.v. but Y is not
- (D) E(XY) = 0
- **51**. Which of the following is called Markov inequality?
 - (A) $(E(X))^2 > E(X^2)$
 - (B) $(E(XY))^2 > E(X^2) E(Y^2)$
 - (C) $P(|X| > C) \le E(|X|)/C, C > 0$
 - (D) $E(|X + Y|) \le E(|X|) + E(|Y|)$

ξΩ	
5 2.	Let X_1, X_2, \ldots, X_n be i.i.d. exponential random variable. Then $\min_{1 \le i \le n} X_i$
	follows:
	(A) uniform distribution (B) exponential distribution
	(C) normal distribution (D) Chi-square distribution
53.	If X has a uniform distribution over $(0, 1)$, then the joint distribution of X and Y = 1 - X is:
	(A) degenerate at (1/2, 1/2)
	(B) concentrated on a line
	(C) uniform over the square $(0, 1) \times (0, 1)$
	(D) degenerate at (1, 1)
54.	If X_1 and X_2 are two independent Poisson variates with parameters λ_1 and λ_2 respectively, then consider the two statements:
	$S_1: \frac{X_1+X_2}{2}$ is distributed as Poisson with $\frac{\lambda_1+\lambda_2}{2}$
	$S_2: X_1 + X_2$ is distributed as Poisson with $(\lambda_1 + \lambda_2)$
	Choose your answer from the following:
	(A) Both S_1 and S_2 are correct (B) Only S_1 is correct
	(C) Only S ₂ is correct (D) Neither S ₁ nor S ₂ is correct
55.	The Chi-square distribution is a particular case of:
	(A) Gamma distribution (B) Beta I distribution
	(C) Exponential distribution (D) Beta II distribution
56.	If $X_{(1)}$, $X_{(2)}$, $X_{(n)}$ is an ordered sample from $U(\theta, \theta + 1)$, then which of the following statements is <i>not</i> true ?
,	(A) $(X_{(1)}, X_{(n)})$ is sufficient statistic for θ
	(B) $(X_{(1)}, X_{(n)})$ is complete sufficient statistic for θ
	(C) $(X_{(1)}, X_{(n)})$ is minimal sufficient statistic for θ
	(D) $(X_{(1)}, X_{(n)})$ is minimal sufficient but not complete for θ
7. AT - 4.7	
Mati	n. Sci.—II

(D)
$$.025 < P < .05$$

58.
$$X_1$$
, X_2 , X_n be i.i.d. with p.d.f.

$$f(x) = \frac{\theta}{x^{\theta+1}} \qquad x > 1, \ \theta > 1$$

$$= 0$$

otherwise

The moment estimator of θ is :

(A)
$$\bar{x}$$

(B)
$$\frac{1}{\bar{x}}$$

(C)
$$\frac{\overline{x}}{\overline{x}-1}$$

(D)
$$\frac{\overline{x}-1}{\overline{x}}$$

59. X_1 , X_2 , X_n be i.i.d. $N(\mu, \sigma^2)$. The most powerful test for testing $H_0: \sigma^2 = \sigma_0^2 Vs$. $H_1: \sigma^2 = \sigma_1^2$ is based on the statistic:

(A)
$$\Sigma (X_i - \overline{X})^2$$

(B)
$$\Sigma X_i^2$$

(C)
$$\Sigma (X_i - \mu)^2$$

(D)
$$\sqrt{\sum X_i^2}$$

60. (X_i, Y_i) $i = 1, \dots, n$ is a random sample of n pairs from the p.d.f.

$$f(x, y) = e^{-\left(\theta x + \frac{y}{\theta}\right)} \qquad x > 0, y > 0, \theta > 0$$

= 0

otherwise

Which of the following estimators is sufficient for θ ?

(A)
$$\left(\Sigma \frac{1}{X_i}, \Sigma Y_i\right)$$

(B)
$$(\Sigma X_i, \Sigma Y_i)$$

(C)
$$\left(\Sigma X_i, \Sigma \frac{1}{Y_i}\right)$$

(D)
$$\left(\Sigma \frac{1}{X_i}, \ \Sigma \frac{1}{Y_i}\right)$$

61.	Let r be the correlation coefficient coefficient between $(1 + X)$ and	at between X and Y. Then the correlation $(1 - 2Y)$ is :	on
	(A) 1 - 2r	(B) $-r$	
	(C) r	(D) 2r	
62.		sample from a bivariate normal distribution. The hypothesis H_0 : $\sigma_1^2 = \sigma_2^2$ can	
	(A) Chi-square test	(B) Student's t-test	
	(C) z-test	(D) None of these	
63.	Chi-square test of goodness of fi	t was first proposed by:	
	(A) R.A. Fisher	(B) A. Wald	
	(C) K. Pearson	(D) C.R. Rao	
64.	In the two-way classification mo	del	
	$y_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ij};$	i = 1r	
		j = 1c	
	the degrees of freedom for the e	rror are:	
•	(A) $(r-1)(c-1)$	(B) $r(c-1)$	
	(C) $c(r-1)$	(D) None of these	
65.		ry model with deterministic demand, coordering C_o and cost of a unit item C . mal order quantity depends on :	
	(A) all the 3 costs	(B) only C_{I} and C_{o}	
	(C) only C _I and C	(D) only C _o and C	
66.		tion in a Poisson fashion with 4 custome no arrivals between noon and 12.30 P.	
	(A) $1 - e^{-2}$	(B) e^{-2}	
	(C) e^{-4}	(D) $1 - e^{-4}$	

16

Math. Sci.—II

67.	In	the	standard	M M 1	model	the	waiting	time	of	a	customer	who	waits
	is	:											

- (A) an exponential r.v.
- (B) a gamma r.v.
- (C) a mixture of an exponential and a degenerate r.v.
- (D) a Poisson r.v.
- 68. Consider the problem of minimising $-w_1+w_2$ subject to the constraints $w_1-w_2\geq 1,\;w_1\geq 0,\;w_2\geq 0.$

Which of the following statements is false?

- (A) The minimising problem has an unbounded solution
- (B) The problem has a unique solution
- (C) (1, 0) is a feasible solution of the given problem
- (D) The convex set of feasible solutions of the problem is unbounded
- 69. Consider a transportation problem with 4 sources of supply of an item and 4 places at which demand for the item exists:

Supply :
$$a_1 = 10$$
, $a_2 = 4$, $a_3 = 5$, $a_4 = 2$

Demand :
$$D_1 = 10$$
, $D_2 = 7$, $D_3 = 5$, $D_4 = 7$.

Then to balance the model we have to introduce:

- (A) a dummy demand location with demand 8
- (B) a dummy demand location with demand -8
- (C) a dummy source with availability 8
- (D) a dummy source with unlimited availability
- 70. Consider the game defined by

2	0
0	2

The value of the game is:

(A) 0

(B) 2

(C) 3

(D) 1

- 71. Consider the following two statements:
 - A: The stratified sampling is always more efficient than SRSWOR.
 - R: By stratifying the population we get groups of utmost homogeneity and therefore, within strata variance is minimised.

Choose your answer from the following:

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is not the correct explanation of A
- (C) A is true but R is false
- (D) A is false but R is true
- 72. The two-stage sampling design is used in large scale surveys because :
 - (i) it provides more efficient estimator for population mean per element than one based on unistage design.
 - (ii) it is easier to collect information on second stage units.
 - (iii) the sampling frame of ultimate stage units is not readily available.
 - (iv) the cost of collecting information in two-stage is less as compared to that of unistage design.

Choose your answer from the following code:

(A) (i) and (ii) only

(B) (i) and (iii) only

(C) (i) and (iv) only

- (D) (ii), (iii) and (iv) only
- 73. The number of replications in an experiment is based on:
 - (i) precision required
 - (ii) availability of experimental material.
 - (iii) heterogeneity of experimental material.

Choose your answer from the following code:

(A) (i) and (ii) only

(B) (i) and (iii) only

(C) (ii) and (iii) only

- (D) (i), (ii) and (iii)
- 74. According to Prof. R.A. Fisher, if s^2 is the estimate of error based on n > 3 degrees of freedom, then the amount of information available from the experimental data is:
 - $(A) \quad \frac{n+1}{n-1} \ \frac{1}{s^2}$

 $(B) \quad \frac{n+1}{n-3} \quad \frac{1}{s^2}$

(C) $\frac{n-1}{n-3} \frac{1}{s^2}$

 $(D) \quad \frac{n-1}{n+3} \quad \frac{1}{s^2}$

ROUGH WORK

ROUGH WORK