A -1

3

CHEMISTRY

1.	A mixture of two moles of carbon monoxide and one mole of oxygen, in a closed vessel is ignited to convert the carbon monoxide to carbon dioxide. If ΔH is the enthalpy change and ΔE is the change in internal energy, then,								
	1)	$\Delta H > \Delta E$	•						
	2)	$\Delta H < \Delta E$							
2	3)	$\Delta H = \Delta E$	r vy						
	·4)	the relationship depends on the ca	paci	ty of the vessel		*			
2.	The cool	ing in refrigerator is due to			9 5	=0			
	1)	Reaction of the refrigerator gas							
*	2)	Expansion of ice							
	3)	The expansion of the gas in the ref	rige	rator		41			
	4)	The work of the compressor				* **			
3.	For a sy	stem in equilibrium, $\Delta G = 0$, under	cond	litions of constant	<i>?</i>	Ÿ			
3 ••	1)	temperature and pressure	2)	temperature and volume					
	3)	pressure and volume	4)	energy and volume	ž.	*			
4.	Molar h	eat of vaporisation of a liquid is 6 k.	Jmo	$ m le^{-1}$. If the entropy change	e is				
		$e^{-1}K^{-1}$, the boiling point of the liqui							
Ŧ	1)	375°C	2)	375 K		8			
	3)	273 K	4)	102°C					
5.	The tem	perature of the system decreases in	an						
	1)	adiabatic compression	2)	isothermal compression					
	(3)	isothermal expansion		adiabatic expansion		•			
	. 3)	isomermar expansion	1/	adiabatic orpations.					

atomic weight

3) molecular weight

(Space for Rough Work)

2) atomic number

4) active mass

11.	For the	reaction $N_{2(g)} + O_{2(g)} \Longrightarrow 2NO_{(g)}$, the	value of $K_{\rm c}$ at 800°C is 0.1. When the					
×	equilibrium concentrations of both the reactants is 0.5 mol, what is the value of K_p at the same temperature?								
	1)	0.5	2)	0.1					
*:	3)	0.01	4)	0.025					
12.	The exte	ent of adsorption of a gas on a solic	depe	ends on					
	1)	nature of the gas	2)	pressure of the gas					
•	. 3)	temperature of the gas	4)	all are correct					
13.	An emu	sifier is a substance which	••						
	1)	stabilises the emulsion	2)	homogenises the emulsion					
	3)	coagulates the emulsion	4)	accelerates the dispersion of liquid in liquid					
14.	. Which of the following types of metals form the most efficient catalysts?								
	1. 1)	alkali metals	2)	alkaline earth metals					
٠.	3)	transition metals	4)	all the above					
15.	The spe	cies among the following, which ca	ın act	as an acid and a base is					
	1)	HSO [⊖] ₄	2)	SO_4^{2-}					

(Space for Rough Work)

4) *Cl*⊖

3) H₃O[⊕]

The standard electrode potential is measured by

4) Fe is oxidised to Fe^{2+} and H_2O is reduced to O_2

1) Electrometer

2) Voltmeter

3) Pyrometer

4) Galvanometer

(Space for Rough Work)

20.

A -1

- A precipitate of AgCl is formed when equal volumes of the following are mixed. $\left[K_S \text{ for } AgCl = 10^{-10}\right]$

 - 1) $10^{-4} M AgNO_3$ and $10^{-7} M HCl$ 2) $10^{-5} M AgNO_3$ and $10^{-6} M HCl$
 - 3) $10^{-5} M AgNO_3$ and $10^{-4} M HCl$
- 4) $10^{-6}\,M$ AgNO $_3$ and $10^{-6}\,M$ HCl
- Which one of the following defects in the crystals lowers its density? 22.
 - 1) Frenkel defect.

2) Schottky defect

3) F-centres

- Interstitial defect
- A radioactive isotope has a half life of 10 days. If today 125 mg is left over, what was its original weight 40 days earlier?
 - 1) 2 g

2) 600 mg

3) 1 g

- 4) 1.5 g
- Which of the particles cannot be accelerated?
 - 1) α particle

2) β -particle

3) Protons

- Neutrons
- In which of the following nuclear reactions neutron is emitted? 25.
 - 1) $\frac{27}{13}Al + \frac{4}{2}He \rightarrow \frac{30}{15}P$ 2) $\frac{12}{6}C + \frac{1}{1}H \rightarrow \frac{13}{7}N$

3) $\frac{30}{15}P \to \frac{30}{14}Si$

4) $\frac{241}{96}Am + \frac{4}{2}He \rightarrow \frac{245}{97}Bk$

- 1) coagulates the impurities.
- softens hard water
- gives taste
- destroys the pathogenic bacteria

A -1

31.		$\frac{1}{1}$ und A has a molecun, gives a monocarbo						
£		ohol. A is	my ne dola	<i>D</i> . 11 001			· ·	
•	1)	chloroform	₹	(2)	chloral	w.		e
	3)	methyl chloride		4)	monochloro acet	ic acid		v
32.	Which o	f the following haloa	lkanes is m	ost reac	tive ?			n h
	1)	1-chloropropane	j "	2)	1-bromopropane			
	3)	2-chloropropane		4)	2-bromopropane			*
33.	The read	ction in which pheno	differs fro	m alcoho	ol is			
	1)	it undergoes esterif	ication wit	h carbox	ylic acid		e 2	
	2)	it reacts with amm	onia	Z1				
	3)	it forms yellow crys	stals of iodo	oform	·			b
	4)	it liberates H_2 with	Na metal			*		
	. 4	· , ·					,	
34.	An orga	\mathbf{nic} compound A cont	caining C , I	H and O	has a pleasant c	dour with bo	piling po	oint of
		n boiling A with con					decolo	ui ises.
	bromine	water and alkaline	$KMnO_4$. T	he organ	nic liquid A is	••••••		
	1)	$C_2 H_5 C l$		2)	$C_2H_5COOCH_3$			3 4 1
	3)	C_2H_5OH	e .	4)	C_2H_6			
35.	Which o	f the following is an	amphoteri	c acid?	r *	2	12.	•
	1)	Glycinc	. 5	2)	Salicylic acid	· 1		
	3)	Benzoic acid	E .	4)	Citric acid	٠.		

36.	Benzyl alcohol and sodium benzoat benzaldehyde. This reaction is know	te is obtained by the action of sodium hydroxide on as	n
	1) Perkin's reaction	2) Cannizzaro's reaction	
	3) Sandmeyer's reaction	4) Claisen condensation	×
37.	Ethyl chloride on heating with AgCN	V_{i} , forms a compound ' X '. The functional isomer of ' X ' i	s-
	$. \qquad 1) C_2 \ H_5 \ NC$	$2) \boldsymbol{C_2} \boldsymbol{H_5} \boldsymbol{NH_2}$	
÷	3) $C_2 H_5 CN$	4) None of the above	
38.	A compound, containing only carbon On complete oxidation it is converted compound is	, hydrogen and oxygen, has a molecular weight of 4d into a compound of molecular weight 60. The original	4. al
	1) an aldehyde	2) an acid	
* .	3) an alcohol	4) an ether	
39.	Grignard reagent adds to	Жs	
(*)	1) > C = 0	$2) -C \equiv N$	
	$3) \supset C = S$	4) all of the above	
40.	Which of the following biomolecules of	contain a non-transition metal ion ?	
ž _{ar}	1) Vitamin B_{12}	2) Chlorophyll	
u v	3) Haemoglobin	4) Insulin	
	(Space	a for Rough Work)	_

41. Three dimensional molecules with cross links are formed in the case of a 2) Thermosetting plastic 1) Thermoplastic 3) Both 4) None Sucrose molecule is made up of 1) a gluco pyranose and a fructo pyranose 2) a gluco pyranose and a fructo furanose 3) a gluco furanose and a fructo pyranose 4) a gluco furanose and a fructo furanose Water insoluble component of starch is 43. 2) amylose 1) amylopectin 4) none of the above 3) cellulose An example for a saturated fatty acid, present in nature is 1) Oleic acid 2) Linoleic acid 3) Linolenic acid 4) Palmitic acid A Nanopeptide contains peptide linkages. and the man in the state of the 2) 8 3) 9

(Space for Rough Work)

SR - 17

12

A -1

(Space for Rough Work)

4) Na^+

3) *Na*

1.	Molarity	of 0.2 N H	₂ SO ₄ is						9		1.
	1) 3)	0.2 0.6		š	2) 4)	0.4 0.1	•			Ti din	*
2.	In the eq	quation of st	ate of an ic	leal gas	PV = n	RT , the valu	e of the	univers	al gas	s cons	stant
	would de	epend only o	n		8				1.		
	1)	the nature	of the gas		2)	the pressu	re of the	gas			
	3)	the units o	f the meas	urement	4)	None of th	e above				¥
3 .	A comme	ercial sample	e of hydrog	en perox	ide is la	belled as 10 v	volume. I	ts perce	ntag	e stre	ngth
	is nearly	<i>7</i>		2	*	X	(20)	ï	14		
	1)	1%	- G - S	° 0 - 8	2)	3%		. * *	(*)	*** **	
	3)	10%			4)	90%					
54.	Activate	d charcoal	is used to	remove	colouri	ng matter fr	om pure	substa	nces.	It w	ork
	by			, at a		ar se					
	1)	oxidation			2)	reduction	8	: ·			
	3)	bleaching		*	4)	adsorption	ų. ·				a
55.	When pl	ants and an	imals deca	y, the or	ganic ni	trogen is cor	verted i	nto inor	ganic	nitro	ogen
	The inor	ganic nitrog	en is in th	e form of	· · · · · · · · · · · · · · · · · · ·	•••	8 .	• .			
8	1)	Ammonia		ē	2)	Elements	of nitroge	en .		27	E
ē	3)	Nitrates			4)	Nitrides		· ·	i	* * * *	
			. (Space fo	r Rough	· Work)			for a	* x	

13

SR - 17

A -1

- **56.** A gas decolourised by $KMnO_4$ solution but gives no precipitate with ammonical cuprous chloride is
 - 1) Ethane
 - 3) Ethene

- 2) Methane
- 4) Acetylene
- 57. $H_3C C = CH CH CH_3$ is $Cl \qquad CH_3$
 - 1) 2-chloro-4-methyl-2-pentene
- 2) 4-chloro-2-methyl-3-pentene
- 3) 4-methyl-2-chloro-2-pentene
- 4) 2-chloro-4,4-dimethyl-2-butene
- 58. Amongst the following, the compound that can most readily get sulphonated is?
 - 1) Benzene

2) Toluene

3) Nitrobenzene

- 4) Chlorobenzene
- **59.** Household gaseous fuel (LPG) mainly contains
 - 1) CH4

2) C_2H_2

3) C_2H_4

- 4) C_4H_{10}
- 60. Use of chlorofluoro carbons is not encouraged because
 - 1) they are harmful to the eyes of people that use it.
 - 2) they damage the refrigerators and air conditioners.
 - 3) they eat away the ozone in the atmosphere.
 - 4) they destroy the oxygen layer.